Zahoránszky-Kőhalmi Gergely, Sheils Timothy, Oprea Tudor I
National Center for Advancing Translational Sciences, Rockville, MD, USA.
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA.
J Cheminform. 2020 Jan 21;12(1):5. doi: 10.1186/s13321-020-0409-9.
Drug discovery investigations need to incorporate network pharmacology concepts while navigating the complex landscape of drug-target and target-target interactions. This task requires solutions that integrate high-quality biomedical data, combined with analytic and predictive workflows as well as efficient visualization. SmartGraph is an innovative platform that utilizes state-of-the-art technologies such as a Neo4j graph-database, Angular web framework, RxJS asynchronous event library and D3 visualization to accomplish these goals.
The SmartGraph framework integrates high quality bioactivity data and biological pathway information resulting in a knowledgebase comprised of 420,526 unique compound-target interactions defined between 271,098 unique compounds and 2018 targets. SmartGraph then performs bioactivity predictions based on the 63,783 Bemis-Murcko scaffolds extracted from these compounds. Through several use-cases, we illustrate the use of SmartGraph to generate hypotheses for elucidating mechanism-of-action, drug-repurposing and off-target prediction.
药物发现研究在应对药物-靶点和靶点-靶点相互作用的复杂局面时,需要纳入网络药理学概念。这项任务需要能够整合高质量生物医学数据,并结合分析和预测工作流程以及高效可视化的解决方案。SmartGraph是一个创新平台,它利用诸如Neo4j图形数据库、Angular网络框架、RxJS异步事件库和D3可视化等先进技术来实现这些目标。
SmartGraph框架整合了高质量的生物活性数据和生物途径信息,形成了一个知识库,其中包含271,098种独特化合物与2018个靶点之间定义的420,526种独特的化合物-靶点相互作用。然后,SmartGraph基于从这些化合物中提取的63,783个Bemis-Murcko支架进行生物活性预测。通过几个用例,我们展示了如何使用SmartGraph来生成用于阐明作用机制、药物再利用和脱靶预测的假设。可用性:https://smartgraph.ncats.io/ 。