DTiGEMS+:使用图嵌入、图挖掘和基于相似度的技术进行药物-靶点相互作用预测。

DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques.

作者信息

Thafar Maha A, Olayan Rawan S, Ashoor Haitham, Albaradei Somayah, Bajic Vladimir B, Gao Xin, Gojobori Takashi, Essack Magbubah

机构信息

Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.

Collage of Computers and Information Technology, Taif University, Taif, Kingdom of Saudi Arabia.

出版信息

J Cheminform. 2020 Jun 29;12(1):44. doi: 10.1186/s13321-020-00447-2.

Abstract

In silico prediction of drug-target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computational methods is not an easy task, but is much needed, as current methods that predict potential drug-target interactions suffer from high false-positive rates. Here we introduce DTiGEMS+, a computational method that predicts Drug-Target interactions using Graph Embedding, graph Mining, and Similarity-based techniques. DTiGEMS+ combines similarity-based as well as feature-based approaches, and models the identification of novel drug-target interactions as a link prediction problem in a heterogeneous network. DTiGEMS+ constructs the heterogeneous network by augmenting the known drug-target interactions graph with two other complementary graphs namely: drug-drug similarity, target-target similarity. DTiGEMS+ combines different computational techniques to provide the final drug target prediction, these techniques include graph embeddings, graph mining, and machine learning. DTiGEMS+ integrates multiple drug-drug similarities and target-target similarities into the final heterogeneous graph construction after applying a similarity selection procedure as well as a similarity fusion algorithm. Using four benchmark datasets, we show DTiGEMS+ substantially improves prediction performance compared to other state-of-the-art in silico methods developed to predict of drug-target interactions by achieving the highest average AUPR across all datasets (0.92), which reduces the error rate by 33.3% relative to the second-best performing model in the state-of-the-art methods comparison.

摘要

药物-靶点相互作用的计算机模拟预测是可持续药物开发过程中的关键阶段,尤其是当研究重点是利用现有药物的重新定位时。然而,开发这样的计算方法并非易事,但却非常必要,因为目前预测潜在药物-靶点相互作用的方法存在较高的假阳性率。在此,我们介绍DTiGEMS+,一种使用图嵌入、图挖掘和基于相似性的技术来预测药物-靶点相互作用的计算方法。DTiGEMS+结合了基于相似性和基于特征的方法,并将新型药物-靶点相互作用的识别建模为异构网络中的链接预测问题。DTiGEMS+通过用另外两个互补图(即药物-药物相似性图和靶点-靶点相似性图)增强已知药物-靶点相互作用图来构建异构网络。DTiGEMS+结合不同的计算技术来提供最终的药物靶点预测,这些技术包括图嵌入、图挖掘和机器学习。DTiGEMS+在应用相似性选择程序以及相似性融合算法后,将多种药物-药物相似性和靶点-靶点相似性整合到最终的异构图构建中。使用四个基准数据集,我们表明,与其他为预测药物-靶点相互作用而开发的最新计算机模拟方法相比,DTiGEMS+显著提高了预测性能,在所有数据集中实现了最高的平均AUPR(0.92),相对于最新方法比较中表现第二好的模型,错误率降低了33.3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca50/7325230/537be361c84b/13321_2020_447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索