Suppr超能文献

评估基于深度学习的分子性质预测的可扩展不确定性估计方法。

Evaluating Scalable Uncertainty Estimation Methods for Deep Learning-Based Molecular Property Prediction.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy.

出版信息

J Chem Inf Model. 2020 Jun 22;60(6):2697-2717. doi: 10.1021/acs.jcim.9b00975. Epub 2020 Apr 24.

Abstract

Advances in deep neural network (DNN)-based molecular property prediction have recently led to the development of models of remarkable accuracy and generalization ability, with graph convolutional neural networks (GCNNs) reporting state-of-the-art performance for this task. However, some challenges remain, and one of the most important that needs to be fully addressed concerns uncertainty quantification. DNN performance is affected by the volume and the quality of the training samples. Therefore, establishing when and to what extent a prediction can be considered reliable is just as important as outputting accurate predictions, especially when out-of-domain molecules are targeted. Recently, several methods to account for uncertainty in DNNs have been proposed, most of which are based on approximate Bayesian inference. Among these, only a few scale to the large data sets required in applications. Evaluating and comparing these methods has recently attracted great interest, but results are generally fragmented and absent for molecular property prediction. In this paper, we quantitatively compare scalable techniques for uncertainty estimation in GCNNs. We introduce a set of quantitative criteria to capture different uncertainty aspects and then use these criteria to compare MC-dropout, Deep Ensembles, and bootstrapping, both theoretically in a unified framework that separates aleatoric/epistemic uncertainty and experimentally on public data sets. Our experiments quantify the performance of the different uncertainty estimation methods and their impact on uncertainty-related error reduction. Our findings indicate that Deep Ensembles and bootstrapping consistently outperform MC-dropout, with different context-specific pros and cons. Our analysis leads to a better understanding of the role of aleatoric/epistemic uncertainty, also in relation to the target data set features, and highlights the challenge posed by out-of-domain uncertainty.

摘要

基于深度神经网络(DNN)的分子性质预测的进展最近导致了模型的发展,这些模型具有出色的准确性和泛化能力,图卷积神经网络(GCNNs)在这项任务中报告了最先进的性能。然而,仍存在一些挑战,其中最重要的一个需要完全解决的是不确定性量化问题。DNN 的性能受到训练样本的数量和质量的影响。因此,确定何时以及在何种程度上可以认为预测是可靠的,与输出准确的预测同样重要,尤其是在针对域外分子时。最近,已经提出了几种用于 DNN 不确定性估计的方法,其中大多数方法基于近似贝叶斯推理。在这些方法中,只有少数方法可以扩展到应用所需的大型数据集。最近,评估和比较这些方法引起了极大的兴趣,但结果通常是分散的,并且缺乏分子性质预测的结果。在本文中,我们定量比较了 GCNN 中用于不确定性估计的可扩展技术。我们引入了一组定量标准来捕捉不同的不确定性方面,然后使用这些标准在理论上在一个统一的框架中比较 MC-dropout、Deep Ensembles 和自举,该框架将随机不确定性/认知不确定性分开,并在公共数据集上进行实验。我们的实验量化了不同不确定性估计方法的性能及其对不确定性相关误差减少的影响。我们的发现表明,Deep Ensembles 和自举始终优于 MC-dropout,具有不同的特定于上下文的优缺点。我们的分析使我们更好地理解了随机不确定性/认知不确定性的作用,也与目标数据集的特征有关,并强调了域外不确定性带来的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验