Suppr超能文献

生物自发光作为一种非侵入性监测工具,用于监测酵母细胞培养中氧化的化学和物理调控。

Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture.

机构信息

Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia.

Faculty of Health, Catholic University in Ruzomberok, Ruzomberok, Slovakia.

出版信息

Sci Rep. 2021 Jan 11;11(1):328. doi: 10.1038/s41598-020-79668-2.

Abstract

Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.

摘要

在生理和病理生理过程中,生物体正常或过度的氧化代谢是必不可少的。因此,由于环境中充斥着各种物理化学因素,监测由化学或物理刺激引起的生物氧化过程如今变得至关重要。目前的技术通常需要添加化学标记物或光照,这会干扰要分析的样品。此外,目前的技术在样品制备和设备方面要求很高。为了缓解这些限制,我们提出了一种基于生物自发荧光(BAL)的无标记氧化监测工具。我们在酿酒酵母细胞培养物上证明了该工具的有效性。我们表明,BAL 可用于监测由于芬顿试剂引发的氧化而导致的酵母的化学干扰- BAL 强度随过氧化氢浓度呈剂量依赖性变化。此外,我们还表明,BAL 反映了低频磁场对酵母细胞培养的影响,在暴露组与对照组中,我们观察到 BAL 动力学的干扰。我们的结果为开发用于无标记、实时、非侵入性监测氧化过程及其调节的新技术做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18d/7801494/13b95fe48f35/41598_2020_79668_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验