Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2021 Jan 27;143(3):1503-1512. doi: 10.1021/jacs.0c11266. Epub 2021 Jan 12.
Interpenetration of two or more sublattices is common among many metal-organic frameworks (MOFs). Herein, we study the evolution of one zirconium cluster-based, 3,8-connected MOF from its non-interpenetrated (NU-1200) to interpenetrated (STA-26) isomer. We observe this transient catenation process indirectly using ensemble methods, such as nitrogen porosimetry and X-ray diffraction, and directly, using high-resolution transmission electron microscopy. The approach detailed here will serve as a template for other researchers to monitor the interpenetration of their MOF samples at the bulk and single-particle limits. We investigate the mechanical stability of both lattices experimentally by pressurized X-ray diffraction and nanoindentation as well as computationally with density functional theory calculations. Both lines of study reveal that STA-26 is considerably more mechanically stable than NU-1200. We conclude this study by demonstrating the potential of these MOFs and their mixed phases for the capture of gaseous -hexane, used as a structural mimic for the chemical warfare agent sulfur mustard gas.
在许多金属有机骨架(MOFs)中,两个或多个亚晶格的互穿是很常见的。在这里,我们研究了一种基于锆簇的、3,8-连接的 MOF 从非互穿(NU-1200)到互穿(STA-26)异构体的演变。我们使用氮吸附法和 X 射线衍射等整体方法以及高分辨率透射电子显微镜直接观察到这种瞬态交联过程。这里详述的方法将为其他研究人员提供模板,以在整体和单颗粒极限监测他们的 MOF 样品的互穿。我们通过加压 X 射线衍射和纳米压痕实验以及密度泛函理论计算来研究这两种晶格的机械稳定性。这两个研究方向都表明,STA-26 比 NU-1200 具有显著更高的机械稳定性。我们通过展示这些 MOFs 及其混合相捕获气态正己烷的潜力来结束本研究,正己烷被用作化学战剂芥子气的结构模拟物。