Han Haixiang, Yao Yuan, Robinson Richard D
Materials Science and Engineering Department, Cornell University, Ithaca, New York 14853, United States.
Acc Chem Res. 2021 Feb 2;54(3):509-519. doi: 10.1021/acs.accounts.0c00704. Epub 2021 Jan 12.
ConspectusChemically induced transformations are postsynthetic processing reactions applied to first generation (as-synthesized) nanomaterials to modify property-defining factors such as atomic structure, chemical composition, surface chemistry, and/or morphology. Compared with conditions for direct synthesis of colloidal nanocrystals, postsynthetic chemical transformations can be conducted in relatively mild conditions with a more controllable process, which makes them suitable for the precise manipulation of nanomaterials and for trapping metastable phases that are typically inaccessible from the conventional synthetic routes. Each of the chemically induced transformations methods can result in substantial restructuring of the atomic structure, but their transformation pathways can be very different. And the converse is also true: the atomic structure of the parent material plays a large role in the pathway toward and the resulting chemically transformed product. Additionally, the characteristic length of the parent material greatly affects the structure, which affects the outcome of the reaction.In this Account, we show how the atomic structure and nanoscale size directs the product formation into materials that are inaccessible from analogous chemically transformations in bulk materials. Through examples from the three chemical transformation processes (cation/anion exchange, redox reactions, and ligand exchange and ligand etching), the effect of the atomic structure on chemical transformations is made apparent, and vice versa. For cation exchange, an anisotropic atomic lattice results in a unidirectional exchange boundary. And because the interface can extend through the full crystal, a substantial strain field can form, influencing the phase of the material. In the redox reaction that leads to the nanoscale Kirkendall effect, the atomic structure is the key to inverting the diffusion rates in a diffusion couple to form the hollow cores. And for ligand etching, if one of the materials in a heterostructure has a defected and\or defect-tolerant atomic structure, it can be preferentially etched and its atomic structure can undergo phase transformations while the other composition remains intact. For length scales, we show how the chemically induced transformations greatly differ between bulk, nanocrystal, and nanocluster characteristic sizes. For instance, the structural transformation on relatively large nanocrystals (2-100 nm) can be a continuous process when the activation volume is smaller than the nanocrystal, while for smaller nanoclusters (<2 nm) the transformation kinetics could be swift resulting in only discrete thermodynamic states. Comparing the two nanosystems (nanocrystals to small nanoclusters), we address how their atomic structural differences can direct the divergent transformation phenomena and the corresponding mechanisms. Understanding the nanoscale mechanisms of chemically induced transformations and how they differ from bulk processes is key to unlocking new science and for implementing this processing for functional materials.
综述
化学诱导转变是应用于第一代(合成态)纳米材料的合成后处理反应,用于修饰定义性质的因素,如原子结构、化学成分、表面化学和/或形态。与直接合成胶体纳米晶体的条件相比,合成后化学转变可以在相对温和的条件下进行,过程更可控,这使其适用于纳米材料的精确操控以及捕获通常无法通过传统合成路线获得的亚稳相。每种化学诱导转变方法都可导致原子结构的实质性重构,但其转变途径可能非常不同。反之亦然:母体材料的原子结构在化学转变产物的形成途径及最终产物中起很大作用。此外,母体材料的特征长度对结构有很大影响,进而影响反应结果。
在本综述中,我们展示了原子结构和纳米尺度大小如何将产物形成导向在块状材料中类似化学转变无法获得的材料。通过阳离子/阴离子交换、氧化还原反应以及配体交换和配体蚀刻这三种化学转变过程的实例,原子结构对化学转变的影响以及反之亦然的情况变得明显。对于阳离子交换,各向异性的原子晶格会导致单向交换边界。并且由于界面可贯穿整个晶体,会形成相当大的应变场,影响材料的相。在导致纳米尺度柯肯达尔效应的氧化还原反应中,原子结构是反转扩散偶中扩散速率以形成中空核的关键。对于配体蚀刻,如果异质结构中的一种材料具有有缺陷和/或耐缺陷的原子结构,它会被优先蚀刻,其原子结构会发生相变,而另一种成分保持不变。对于长度尺度,我们展示了化学诱导转变在块状、纳米晶体和纳米团簇特征尺寸之间有很大差异。例如,当活化体积小于纳米晶体时,相对较大的纳米晶体(2 - 100 nm)上的结构转变可能是一个连续过程,而对于较小的纳米团簇(<2 nm),转变动力学可能很快,仅产生离散的热力学状态。比较这两种纳米体系(纳米晶体与小纳米团簇),我们阐述了它们的原子结构差异如何导致不同的转变现象及相应机制。理解化学诱导转变的纳米尺度机制以及它们与块状过程的不同之处,是开启新科学以及将这种处理应用于功能材料的关键。