Suppr超能文献

有机分子作为控制胶体量子点生长、表面结构和氧化还原活性的工具。

Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

机构信息

Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States.

出版信息

Acc Chem Res. 2013 Nov 19;46(11):2607-15. doi: 10.1021/ar400078u. Epub 2013 Jun 4.

Abstract

In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this Account, I describe the varied roles of organic molecules in controlling the structure and properties of colloidal quantum dots. Molecules serve as surfactant that determines the mechanism and rate of nucleation and growth and the final size and surface structure of a quantum dot. Anionic surfactant in the reaction mixture allows precise control over the size of the quantum dot core but also drives cation enrichment and structural disordering of the quantum dot surface. Molecules serve as chemisorbed ligands that dictate the energetic distribution of surface states. These states can then serve as thermodynamic traps for excitonic charge carriers or couple to delocalized states of the quantum dot core to change the confinement energy of excitonic carriers. Ligands, therefore, in some cases, dramatically shift the ground state absorption and photoluminescence spectra of quantum dots. Molecules also act as protective layers that determine the probability of redox processes between quantum dots and other molecules. How much the ligand shell insulates the quantum dot from electron exchange with a molecular redox partner depends less on the length or degree of conjugation of the native ligand and more on the density and packing structure of the adlayer and the size and adsorption mode of the molecular redox partner. Control of quantum dot properties in these examples demonstrates that nanoscale interfaces, while complex, can be rationally designed to enhance or specify the functionality of a nanostructured system.

摘要

为了实现高效可靠的太阳能利用技术,必须了解不同类型或相态材料之间界面处电子和能量的行为。在凝聚相体系中,将光转化为化学或电势能需要自由能的梯度,以允许能量或电荷载流子的移动,并促进氧化还原反应和光激发态(激子)的离解为自由电荷载流子。这种自由能梯度存在于固-液相间或无机和有机材料之间。与体材料相比,纳米结构材料具有更高密度的这些界面。然而,纳米结构材料具有体材料所没有的结构和化学复杂性,这带来了一个艰巨的挑战:降低或消除电子和能量流的能垒,而这些能垒不可避免地是由于迫使不同的材料在原子尺寸的空间区域相遇而产生的。纳米结构材料的化学功能化可能是控制其界面势能景观和最小化由于界面结构和电子缺陷导致的能量转换效率损失的最通用和强大的策略。胶体量子点是通过湿化学方法合成的半导体纳米晶体,并涂覆有有机分子。化学家可以使用这些模型系统来研究纳米尺度有机/无机界面的化学功能化对纳米结构材料的光学和电子性质以及界面处电子和能量行为的影响。胶体量子点的光学和电子性质对其表面化学具有强烈的敏感性,并且它们的有机覆盖层使它们在溶剂中具有分散性。这使得研究人员能够使用高信噪比的溶液相光谱学来研究界面处的过程。在本报告中,我描述了有机分子在控制胶体量子点的结构和性质方面的各种作用。分子作为表面活性剂,决定了成核和生长的机制和速率,以及量子点的最终尺寸和表面结构。反应混合物中的阴离子表面活性剂可以精确控制量子点核心的尺寸,但也会导致量子点表面的阳离子富集和结构无序。分子作为化学吸附配体,决定了表面态的能量分布。这些态然后可以作为激子电荷载流子的热力学陷阱,或者与量子点核心的离域态耦合,从而改变激子载流子的约束能量。因此,在某些情况下,配体可以显著改变量子点的基态吸收和光致发光光谱。分子还作为保护层,决定了量子点与其他分子之间的氧化还原过程的可能性。配体壳层从电子与分子氧化还原伴侣的交换中隔离量子点的程度,不仅取决于天然配体的长度或共轭程度,还取决于覆盖层的密度和堆积结构以及分子氧化还原伴侣的大小和吸附模式。这些例子中的量子点性质的控制表明,虽然纳米尺度界面很复杂,但可以进行合理设计以增强或指定纳米结构系统的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验