Department of Chemistry, University of California, Riverside, California 92521, United States.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China.
Acc Chem Res. 2021 Mar 2;54(5):1168-1177. doi: 10.1021/acs.accounts.0c00743. Epub 2021 Jan 13.
The unprecedented development of inorganic nanostructure synthesis has paved the way toward their broad applications in areas such as food science, agroforestry, energy conversion, and biomedicine. The precise manipulation of the nucleation and subsequent growth has been recognized as the central guiding principle for controlling the size and morphology of the nanostructures. However, conventional colloid syntheses based on direct precipitation reactions still have limitations in their versatility and extendibility. The crystal structure of a material determines the limited number of possible morphologies that its nanostructures can adopt. Further, as nucleation and growth kinetics are sensitive to not only the nature of the precipitation reactions but also ligands and ripening effect, rigorous control of reaction conditions must be established for every specific synthesis. In addition, multiple experimental parameters are entangled with each other, thereby requiring rigorous control of all reaction conditions. As a result, it is usually challenging to extend a synthetic recipe from one material to another. As an alternative method, the direct transformation of existing nanostructures into target ones has become an effective and robust approach capable of creating various complex nanostructures that are otherwise challenging to obtain using conventional methods. To this end, an in-depth understanding of nanoscale transformation toward the synthesis of inorganic nanostructures with diverse properties and applications is highly desirable.In this Account, we aim to reveal the critical effect of the interfacial diffusion on controlled nanoscale transformation. We first discuss how the interdiffusion rates determine the morphology and properties of bimetallic nanostructures. While equal interdiffusion rates lead to perfect mixing and generate fully alloyed nanostructures, interdiffusion at unequal rates creates vacancies in the fast diffusion side, which may cause dramatic morphological transformation to the nanostructures. Then, we introduce interfacial reactions, including the Kirkendall cavitation process, elimination reaction, and solid-state reaction, to promote the unbalanced interdiffusion and generalize nanoscale transformations in materials of various compositions, morphologies, and crystal structures. Finally, we discuss the use of capping ligands to inhibit the diffusion of atoms on one side of the interface in order to enable selective etching or transformation of the nanostructures. By modifying the nanostructured surface with specific capping ligands, the diffusion of surface atoms is restricted. When nanoparticles undergo chemical reactions (such as etching or heating), the outward diffusion of substances dominates, thereby successfully achieving chemical and morphological transformations. We believe that controlled interfacial diffusion can effectively manipulate nanoscale transformations, thus providing new strategies for the custom synthesis of multifunctional nanomaterials for various specific applications.
无机纳米结构合成的空前发展为其在食品科学、农林业、能量转换和生物医学等领域的广泛应用铺平了道路。精确控制纳米结构的成核和后续生长已被认为是控制纳米结构尺寸和形态的核心指导原则。然而,基于直接沉淀反应的传统胶体合成在通用性和可扩展性方面仍存在局限性。材料的晶体结构决定了其纳米结构可以采用的可能形态的有限数量。此外,由于成核和生长动力学不仅受沉淀反应的性质、配体和熟化效应的影响,而且还受这些因素的影响,因此必须为每一种特定的合成建立严格的反应条件控制。此外,多个实验参数相互交织在一起,因此需要严格控制所有的反应条件。因此,将一种合成方案从一种材料扩展到另一种材料通常具有挑战性。作为一种替代方法,将现有纳米结构直接转化为目标纳米结构已成为一种有效且强大的方法,可以创造各种复杂的纳米结构,而这些结构用传统方法通常难以获得。为此,深入了解纳米尺度转化对于具有多种性质和应用的无机纳米结构的合成具有重要意义。在本综述中,我们旨在揭示界面扩散对控制纳米尺度转化的关键影响。我们首先讨论了互扩散率如何决定双金属纳米结构的形态和性质。当互扩散率相等时,会导致完全混合并生成完全合金化的纳米结构;而当互扩散率不相等时,在快速扩散侧会产生空位,这可能导致纳米结构发生剧烈的形态转变。然后,我们介绍了界面反应,包括柯肯达尔空穴过程、消除反应和固态反应,以促进不平衡互扩散,并将纳米尺度转化推广到具有各种组成、形态和晶体结构的材料中。最后,我们讨论了使用封端配体来抑制界面一侧原子的扩散,从而实现纳米结构的选择性刻蚀或转化。通过用特定的封端配体修饰纳米结构表面,可以限制表面原子的扩散。当纳米颗粒发生化学反应(如刻蚀或加热)时,物质的外向扩散占主导地位,从而成功实现了化学和形态的转变。我们相信,控制界面扩散可以有效地控制纳米尺度的转化,从而为各种特定应用的多功能纳米材料的定制合成提供新的策略。