Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
Department of Civil and Environmental Engineering, University of Alberta, 3-133 Markin/CNRL Natural Resources Engineering Facility, Edmonton, Alberta T6G 2W2, Canada.
Environ Sci Technol. 2020 Nov 3;54(21):14036-14045. doi: 10.1021/acs.est.0c04347. Epub 2020 Oct 12.
Bacterial deposition is the first step in the formation of microbial biofilms in environmental technology, and there is high interest in controlling such deposition. Earlier work indicated that direct current (DC) electric fields could influence bacterial deposition in percolation columns. Here, a time-resolved quartz crystal microbalance with dissipation monitoring (QCM-D) and microscopy-based cell counting were used to quantify DC field effects on the deposition of bacterial strains KT2440 and LP6a at varying electrolyte concentrations and weak electric field strengths (0-2 V cm). DC-induced frequency shifts (Δ), dissipation energy (Δ), and ratios thereof (Δ/Δ) proved as good indicators of the rigidity of cell attachment. We interpreted QCM-D signals using a theoretical approach by calculating the attractive DLVO-force and the shear and drag forces acting on a bacterium near collector surfaces in a DC electric field. We found that changes in DC-induced deposition of bacteria depended on the relative strengths of electrophoretic drag and electro-osmotic shear forces. This could enable the prediction and electrokinetic control of microbial deposition on surfaces in natural and manmade ecosystems.
细菌沉积是环境技术中微生物生物膜形成的第一步,因此人们高度关注如何控制这种沉积。早期的研究表明,直流(DC)电场可以影响渗滤柱中的细菌沉积。在这里,我们使用时间分辨石英晶体微天平(QCM-D)和基于显微镜的细胞计数来量化 DC 电场对细菌菌株 KT2440 和 LP6a 在不同电解质浓度和弱电场强度(0-2 V cm)下沉积的影响。直流引起的频率变化(Δ)、耗散能量(Δ)及其比值(Δ/Δ)被证明是细胞附着刚性的良好指标。我们通过计算作用在直流电场中靠近收集器表面的细菌上的吸引力 DLVO 力以及剪切和阻力,使用一种理论方法来解释 QCM-D 信号。我们发现,细菌的直流诱导沉积变化取决于电泳曳力和电动剪切力的相对强度。这可以使人们能够预测和电动控制在自然和人为生态系统中表面上的微生物沉积。