Suppr超能文献

改进增长混合模型的收敛,无需协方差结构约束。

Improving convergence in growth mixture models without covariance structure constraints.

机构信息

Arizona State University, USA.

University of Maryland at College Park, USA.

出版信息

Stat Methods Med Res. 2021 Apr;30(4):994-1012. doi: 10.1177/0962280220981747. Epub 2021 Jan 12.

Abstract

Growth mixture models are a popular method to uncover heterogeneity in growth trajectories. Harnessing the power of growth mixture models in applications is difficult given the prevalence of nonconvergence when fitting growth mixture models to empirical data. Growth mixture models are rooted in the random effect tradition, and nonconvergence often leads researchers to modify their intended model with constraints in the random effect covariance structure to facilitate estimation. While practical, doing so has been shown to adversely affect parameter estimates, class assignment, and class enumeration. Instead, we advocate specifying the models with a marginal approach to prevent the widespread practice of sacrificing class-specific covariance structures to appease nonconvergence. A simulation is provided to show the importance of modeling class-specific covariance structures and builds off existing literature showing that applying constraints to the covariance leads to poor performance. These results suggest that retaining class-specific covariance structures should be a top priority and that marginal models like covariance pattern growth mixture models that model the covariance structure without random effects are well-suited for such a purpose, particularly with modest sample sizes and attrition commonly found in applications. An application to PTSD data with such characteristics is provided to demonstrate (a) convergence difficulties with random effect models, (b) how covariance structure constraints improve convergence but to the detriment of performance, and (c) how covariance pattern growth mixture models may provide a path forward that improves convergence without forfeiting class-specific covariance structures.

摘要

增长混合模型是一种揭示增长轨迹异质性的常用方法。由于在将增长混合模型拟合到实证数据时经常出现不收敛的情况,因此很难利用增长混合模型的优势。增长混合模型根植于随机效应传统,不收敛通常会导致研究人员通过约束随机效应协方差结构来修改他们预期的模型,以促进估计。虽然这种做法很实用,但已表明它会对参数估计、类别分配和类别枚举产生不利影响。相反,我们主张采用边缘方法来指定模型,以防止为了缓解不收敛而牺牲特定类别的协方差结构的普遍做法。提供了一个模拟来显示建模特定类别的协方差结构的重要性,并建立在现有的文献基础上,表明对协方差施加约束会导致性能不佳。这些结果表明,保留特定类别的协方差结构应该是重中之重,并且像不包含随机效应的协方差模式增长混合模型这样的边缘模型非常适合这种目的,特别是在应用中常见的适度样本量和流失情况下。提供了一个具有此类特征的 PTSD 数据应用程序,以演示 (a) 随机效应模型的收敛困难,(b) 协方差结构约束如何提高收敛性但会降低性能,以及 (c) 协方差模式增长混合模型如何提供一种前进的道路,在不放弃特定类别的协方差结构的情况下提高收敛性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验