Suppr超能文献

底栖两足动物模型。

Models of benthic bipedalism.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Department of Physics, Harvard University, Cambridge, MA, USA.

出版信息

J R Soc Interface. 2021 Jan;18(174):20200701. doi: 10.1098/rsif.2020.0701. Epub 2021 Jan 13.

Abstract

Walking is a common bipedal and quadrupedal gait and is often associated with terrestrial and aquatic organisms. Inspired by recent evidence of the neural underpinnings of primitive aquatic walking in the little skate , we introduce a theoretical model of aquatic walking that reveals robust and efficient gaits with modest requirements for body morphology and control. The model predicts undulatory behaviour of the system body with a regular foot placement pattern, which is also observed in the animal, and additionally predicts the existence of gait bistability between two states, one with a large energetic cost for locomotion and another associated with almost no energetic cost. We show that these can be discovered using a simple reinforcement learning scheme. To test these theoretical frameworks, we built a bipedal robot and show that its behaviours are similar to those of our minimal model: its gait is also periodic and exhibits bistability, with a low efficiency mode separated from a high efficiency mode by a 'jump' transition. Overall, our study highlights the physical constraints on the evolution of walking and provides a guide for the design of efficient biomimetic robots.

摘要

行走是一种常见的两足和四足步态,通常与陆地和水生生物有关。受最近在小鳐鱼中发现的原始水生行走神经基础的启发,我们引入了一个水生行走的理论模型,该模型揭示了具有适度身体形态和控制要求的稳健且高效的步态。该模型预测系统身体的波动行为具有规则的脚部放置模式,这在动物中也观察到,此外还预测了两种状态之间的步态双稳定性的存在,一种状态的运动能量成本很大,另一种状态与几乎没有能量成本相关。我们表明,使用简单的强化学习方案可以发现这些状态。为了验证这些理论框架,我们构建了一个双足机器人,并表明其行为与我们的最小模型相似:它的步态也是周期性的,并且表现出双稳定性,低效率模式与高效率模式之间通过“跳跃”转换分离。总的来说,我们的研究强调了行走进化的物理限制,并为高效仿生机器人的设计提供了指导。

相似文献

1
Models of benthic bipedalism.
J R Soc Interface. 2021 Jan;18(174):20200701. doi: 10.1098/rsif.2020.0701. Epub 2021 Jan 13.
2
Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
Sensors (Basel). 2022 Jun 12;22(12):4440. doi: 10.3390/s22124440.
4
The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis).
J Hum Evol. 2017 Dec;113:155-161. doi: 10.1016/j.jhevol.2017.07.010. Epub 2017 Sep 17.
6
Designing minimal and scalable insect-inspired multi-locomotion millirobots.
Nature. 2019 Jul;571(7765):381-386. doi: 10.1038/s41586-019-1388-8. Epub 2019 Jul 10.
9
Locomotor kinematics and EMG activity during quadrupedal versus bipedal gait in the Japanese macaque.
J Neurophysiol. 2019 Jul 1;122(1):398-412. doi: 10.1152/jn.00803.2018. Epub 2019 May 22.
10
Dynamics of locomotor transitions from arboreal to terrestrial substrates in Verreaux's sifaka (Propithecus verreauxi).
Integr Comp Biol. 2014 Dec;54(6):1148-58. doi: 10.1093/icb/icu110. Epub 2014 Sep 17.

引用本文的文献

1
Exploring the evolutionary adaptations of the unique seahorse tail's muscle architecture through modelling and robotic prototyping.
J R Soc Interface. 2025 May;22(226):20240876. doi: 10.1098/rsif.2024.0876. Epub 2025 May 7.
2
Bootstrapping Virtual Bipedal Walkers with Robotics Scaffolded Learning.
Front Robot AI. 2021 Sep 8;8:702599. doi: 10.3389/frobt.2021.702599. eCollection 2021.

本文引用的文献

3
Reverse-engineering the locomotion of a stem amniote.
Nature. 2019 Jan;565(7739):351-355. doi: 10.1038/s41586-018-0851-2. Epub 2019 Jan 16.
4
The Ancient Origins of Neural Substrates for Land Walking.
Cell. 2018 Feb 8;172(4):667-682.e15. doi: 10.1016/j.cell.2018.01.013.
5
A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems.
Rep Prog Phys. 2016 Nov;79(11):110001. doi: 10.1088/0034-4885/79/11/110001. Epub 2016 Sep 21.
6
Tail use improves performance on soft substrates in models of early vertebrate land locomotors.
Science. 2016 Jul 8;353(6295):154-8. doi: 10.1126/science.aaf0984.
7
Skating by: low energetic costs of swimming in a batoid fish.
J Exp Biol. 2016 Jun 15;219(Pt 12):1804-7. doi: 10.1242/jeb.136358. Epub 2016 Apr 14.
8
Tetrapod-like pelvic girdle in a walking cavefish.
Sci Rep. 2016 Mar 24;6:23711. doi: 10.1038/srep23711.
9
Developmental plasticity and the origin of tetrapods.
Nature. 2014 Sep 4;513(7516):54-8. doi: 10.1038/nature13708. Epub 2014 Aug 27.
10
Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21146-51. doi: 10.1073/pnas.1118669109. Epub 2011 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验