Marzougui Dries, Das Riddhi, Mazzolai Barbara, Adriaens Dominique, Wyffels Francis
Department of Electronics and Information Systems, Ghent University, Ghent, Flanders, Belgium.
Cluster of Excellence livMats @FIT-Freiburg Center for Interactive Materials, University of Freiburg, Freiburg, Germany.
J R Soc Interface. 2025 May;22(226):20240876. doi: 10.1098/rsif.2024.0876. Epub 2025 May 7.
Seahorses possess a unique tail muscle architecture that enables efficient grasping and anchoring onto objects. This prehensile ability is crucial for their survival, as it allows them to resist currents, cling to mates during reproduction and remain camouflaged to avoid predators. Unlike in any other fish, the muscles of the seahorse tail form long, parallel sheets that can span up to 11 vertebral segments. This study investigates how this distinctive muscle arrangement influences the mechanics of prehension. Through simulations validated by a three-dimensional-printed prototype, we reveal the complementary roles of these elongated muscles alongside shorter, intersegmental muscles. Furthermore, we show that muscles spanning more segments allow greater contractile forces and provide more efficient force-to-torque transmissions. Our findings confirm that the elongated muscle-tendon organization in the seahorse tail provides a functional advantage for grasping, offering insights into the evolutionary adaptations of this unique tail structure.
海马拥有独特了拥有独特的尾部肌肉结构,使其能够有效地抓握并固定在物体上。这种抓握能力对它们的生存至关重要,因为这使它们能够抵御水流,在繁殖期间紧紧依附配偶,并保持伪装以躲避捕食者。与其他任何鱼类不同,海马尾巴的肌肉形成了长而平行的片状结构,可跨越多达11个椎骨节段。本研究探讨了这种独特的肌肉排列如何影响抓握力学。通过由三维打印原型验证的模拟,我们揭示了这些细长肌肉与较短的节间肌肉的互补作用。此外,我们表明跨越更多节段的肌肉能够产生更大的收缩力,并提供更有效的力到扭矩的传递。我们的研究结果证实,海马尾巴中细长的肌腱组织为抓握提供了功能优势,为这种独特尾巴结构的进化适应性提供了见解。