Berhe Hailay Weldegiorgis, Al-Arydah Mo'tassem
Department of Mathematics, Mekelle University, Mekelle, Ethiopia.
Department of Mathematics, Khalifa University, Abu Dabi, UAE.
Nonlinear Dyn. 2021;103(1):925-946. doi: 10.1007/s11071-020-06123-2. Epub 2021 Jan 8.
In this study, a new SIVS epidemic model for human papillomavirus (HPV) is proposed. The global dynamics of the proposed model are analyzed under pulse vaccination for the susceptible unvaccinated females and males. The threshold value for the disease-free periodic solution is obtained using the comparison theory for ordinary differential equations. It is demonstrated that the disease-free periodic solution is globally stable if the reproduction number is less than unity under some defined parameters. Moreover, we found the critical value of the pulse vaccination for susceptible females needed to control the HPV. The uniform persistence of the disease for some parameter values is also analyzed. The numerical simulations conducted agreed with the theoretical findings. It is found out using numerical simulation that the pulse vaccination has a good impact on reducing the disease.
在本研究中,提出了一种针对人乳头瘤病毒(HPV)的新型SIVS流行模型。在对易感未接种疫苗的女性和男性进行脉冲疫苗接种的情况下,分析了所提出模型的全局动态。使用常微分方程的比较理论获得了无病周期解的阈值。结果表明,在某些定义参数下,如果繁殖数小于1,则无病周期解是全局稳定的。此外,我们还找到了控制HPV所需的易感女性脉冲疫苗接种的临界值。还分析了某些参数值下疾病的一致持续性。进行的数值模拟与理论结果一致。通过数值模拟发现,脉冲疫苗接种对减少疾病有良好影响。