文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering.

作者信息

Teng Fei, Fussenegger Martin

机构信息

Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 Basel CH-4058 Switzerland.

Faculty of Science University of Basel Mattenstrasse 26 Basel CH-4058 Switzerland.

出版信息

Adv Sci (Weinh). 2020 Nov 27;8(1):2003505. doi: 10.1002/advs.202003505. eCollection 2020 Jan.


DOI:10.1002/advs.202003505
PMID:33437589
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7788585/
Abstract

Extracellular vesicles (EVs) are biocompatible, nano-sized secreted vesicles containing many types of biomolecules, including proteins, RNAs, DNAs, lipids, and metabolites. Their low immunogenicity and ability to functionally modify recipient cells by transferring diverse bioactive constituents make them an excellent candidate for a next-generation drug delivery system. Here, the recent advances in EV biology and emerging strategies of EV bioengineering are summarized, and the prospects for clinical translation of bioengineered EVs and the challenges to be overcome are discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/bdae589d23ed/ADVS-8-2003505-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/1d0dfa3986cd/ADVS-8-2003505-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/7610ea26ee63/ADVS-8-2003505-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/c9d03ef0cf88/ADVS-8-2003505-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/37a96477ac77/ADVS-8-2003505-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/bdae589d23ed/ADVS-8-2003505-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/1d0dfa3986cd/ADVS-8-2003505-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/7610ea26ee63/ADVS-8-2003505-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/c9d03ef0cf88/ADVS-8-2003505-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/37a96477ac77/ADVS-8-2003505-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/7788585/bdae589d23ed/ADVS-8-2003505-g005.jpg

相似文献

[1]
Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering.

Adv Sci (Weinh). 2020-11-27

[2]
Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source.

Drug Deliv. 2020-12

[3]
RNA and Protein Delivery by Cell-Secreted and Bioengineered Extracellular Vesicles.

Adv Healthc Mater. 2022-3

[4]
Tetraspanins in extracellular vesicle formation and function.

Front Immunol. 2014-9-16

[5]
Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release.

J Zhejiang Univ Sci B. 2024-8-15

[6]
Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis.

Cell Biochem Funct. 2022-4

[7]
Biogenesis and delivery of extracellular vesicles: harnessing the power of EVs for diagnostics and therapeutics.

Front Mol Biosci. 2024-1-3

[8]
Biogenesis of Extracellular Vesicles.

Subcell Biochem. 2021

[9]
Diabetic Nephropathy: Perspective on Extracellular Vesicles.

Front Immunol. 2020

[10]
Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles.

Int J Nanomedicine. 2021

引用本文的文献

[1]
Clinical Status of Exosomes: A Review.

HSS J. 2025-8-16

[2]
Exosomal long non-coding RNAs in gastrointestinal cancer: chemoresistance mediators and therapeutic targets.

J Transl Med. 2025-8-8

[3]
Pre-formation loading of extracellular vesicles with exogenous molecules using photoporation.

J Nanobiotechnology. 2025-8-8

[4]
Advances in extracellular vesicle (EV) biomarkers for precision diagnosis and therapeutic in colorectal cancer.

Front Oncol. 2025-7-16

[5]
The Emerging Role of Extracellular Vesicle-Derived lncRNAs and circRNAs in Tumor and Mesenchymal Stem Cells: The Biological Functions and Potential for Clinical Application.

Cancers (Basel). 2025-6-28

[6]
Tumor-derived exosomes and their application in cancer treatment.

J Transl Med. 2025-7-8

[7]
Exosomes in hypoxia: generation, secretion, and physiological roles in cancer progression.

Front Immunol. 2025-6-4

[8]
Tongue squamous cell carcinoma-derived exosomes miR-21-5p affect tumor progression via promoting M2 macrophage polarization.

Noncoding RNA Res. 2025-5-15

[9]
Tumor-derived exosomes as promising tools for cancer diagnosis and therapy.

Front Pharmacol. 2025-5-15

[10]
Interaction Between Neutrophils and Elements of the Blood-Brain Barrier in the Context of Multiple Sclerosis and Ischemic Stroke.

Int J Mol Sci. 2025-5-7

本文引用的文献

[1]
An exosome pathway without an ESCRT.

Cell Res. 2021-2

[2]
The evolving translational potential of small extracellular vesicles in cancer.

Nat Rev Cancer. 2020-12

[3]
RAB31 marks and controls an ESCRT-independent exosome pathway.

Cell Res. 2021-2

[4]
RNA delivery by extracellular vesicles in mammalian cells and its applications.

Nat Rev Mol Cell Biol. 2020-5-26

[5]
Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes.

ACS Nano. 2020-4-28

[6]
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.

Nat Nanotechnol. 2020-4-6

[7]
Tetraspanin-6 negatively regulates exosome production.

Proc Natl Acad Sci U S A. 2020-2-27

[8]
ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes.

J Cell Biol. 2020-3-2

[9]
The biology function and biomedical applications of exosomes.

Science. 2020-2-7

[10]
Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis.

Nat Nanotechnol. 2020-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索