Suppr超能文献

纳米颗粒的聚乙二醇接枝可防止细胞摄取并阻止其穿过细胞屏障层,而不受剪切流和颗粒大小的影响。

Poly(ethylene glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport Through Cell Barrier Layers Regardless of Shear Flow and Particle Size.

作者信息

Gal Noga, Charwat Verena, Städler Brigitte, Reimhult Erik

机构信息

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.

出版信息

ACS Biomater Sci Eng. 2019 Sep 9;5(9):4355-4365. doi: 10.1021/acsbiomaterials.9b00611. Epub 2019 Aug 19.

Abstract

It has long been a central tenet of biomedical research that coating of nanoparticles with hydrated polymers can improve their performance in biomedical applications. However, the efficacy of the approach in vivo is still debated. In vitro model systems to test the performance of engineered nanoparticles for in vivo applications often use nonrepresentative cell lines and conditions for uptake and toxicity tests. We use our platform of monodisperse iron oxide nanoparticles densely grafted with nitrodopamide-poly(ethylene glycol) (PEG) to probe cell interactions with a set of cell types and culture conditions that are relevant for applications in which nanoparticles are injected into the bloodstream. In the past, these particles have proved to have excellent stability and negligible interaction with proteins and membranes under physiological conditions. We test the influence of flow on the uptake of nanoparticles. We also investigate the transport through endothelial barrier cell layers, as well as the effect that PEG-grafted iron oxide nanoparticles have on cell layers relevant for nanoparticles injected into the bloodstream. Our results show that the dense PEG brush and resulting lack of nonspecific protein and membrane interaction lead to negligible cell uptake, toxicity, and transport across barrier layers. These results contrast with far less well-defined polymer-coated nanoparticles that tend to aggregate and consequently strongly interact with cells, for example, by endocytosis.

摘要

长期以来,生物医学研究的一个核心原则是,用亲水性聚合物包覆纳米颗粒可以提高其在生物医学应用中的性能。然而,这种方法在体内的效果仍存在争议。用于测试工程纳米颗粒在体内应用性能的体外模型系统,在摄取和毒性测试中常常使用不具代表性的细胞系和条件。我们使用密集接枝了硝基多巴胺 - 聚乙二醇(PEG)的单分散氧化铁纳米颗粒平台,来探究与一组细胞类型以及培养条件的细胞相互作用,这些细胞类型和培养条件与纳米颗粒注入血流的应用相关。过去已证明,这些颗粒在生理条件下具有出色的稳定性,与蛋白质和膜的相互作用可忽略不计。我们测试了流动对纳米颗粒摄取的影响。我们还研究了纳米颗粒通过内皮屏障细胞层的转运情况,以及接枝了PEG的氧化铁纳米颗粒对与注入血流的纳米颗粒相关的细胞层的影响。我们的结果表明,密集的PEG刷以及由此导致的非特异性蛋白质和膜相互作用的缺乏,使得细胞摄取、毒性以及跨屏障层的转运均可忽略不计。这些结果与定义远不明确的聚合物包覆纳米颗粒形成对比,后者往往会聚集并因此与细胞发生强烈相互作用,例如通过内吞作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验