Suppr超能文献

聚合物刷接枝纳米粒子优先与调理蛋白和白蛋白相互作用。

Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin.

机构信息

Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria.

出版信息

ACS Appl Bio Mater. 2021 Jan 18;4(1):795-806. doi: 10.1021/acsabm.0c01355. Epub 2020 Dec 29.

Abstract

Nanoparticles find increasing applications in life science and biomedicine. The fate of nanoparticles in a biological system is determined by their protein corona, as remodeling of their surface properties through protein adsorption triggers specific recognition such as cell uptake and immune system clearance and nonspecific processes such as aggregation and precipitation. The corona is a result of nanoparticle-protein and protein-protein interactions and is influenced by particle design. The state-of-the-art design of biomedical nanoparticles is the core-shell structure exemplified by superparamagnetic iron oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer shells used for biomedical magnetic imaging and therapy. Densely grafted polymer chains form a polymer brush, yielding a highly repulsive barrier to the formation of a protein corona nonspecific particle-protein interactions. However, recent studies showed that the abundant blood serum protein albumin interacts with dense polymer brush-grafted SPIONs. Herein, we use isothermal titration calorimetry to characterize the nonspecific interactions between human serum albumin, human serum immunoglobulin G, human transferrin, and hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted SPIONs with different grafting densities and core sizes. These particles show similar protein interactions despite their different "stealth" capabilities in cell culture. The SPIONs resist attractive interactions with lysozymes and transferrins, but they both show a significant exothermic enthalpic and low exothermic entropic interaction with low stoichiometry for albumin and immunoglobulin G. Our results highlight that protein size, flexibility, and charge are important to predict protein corona formation on polymer brush-stabilized nanoparticles.

摘要

纳米粒子在生命科学和生物医学中的应用越来越广泛。纳米粒子在生物系统中的命运取决于其蛋白质冠,因为通过蛋白质吸附对其表面性质的重塑会引发特定的识别,如细胞摄取和免疫系统清除以及非特异性过程,如聚集和沉淀。蛋白质冠是纳米粒子-蛋白质和蛋白质-蛋白质相互作用的结果,并受粒子设计的影响。生物医学纳米粒子的最先进设计是核壳结构,例如超顺磁性氧化铁纳米粒子(SPION)接枝致密、高度水合的聚合物壳,用于生物医学磁成像和治疗。密集接枝的聚合物链形成聚合物刷,对蛋白质冠的形成产生高度排斥的屏障,从而阻止非特异性颗粒-蛋白质相互作用。然而,最近的研究表明,丰富的血清白蛋白与致密聚合物刷接枝的 SPION 相互作用。在此,我们使用等温滴定量热法来表征人血清白蛋白、人血清免疫球蛋白 G、人转铁蛋白和鸡卵溶菌酶与具有不同接枝密度和核大小的单分散聚(2-烷基-2-恶唑啉)接枝 SPION 之间的非特异性相互作用。尽管这些粒子在细胞培养中具有不同的“隐身”能力,但它们表现出相似的蛋白质相互作用。SPION 抵抗与溶菌酶和转铁蛋白的吸引力相互作用,但它们都与白蛋白和免疫球蛋白 G 表现出显著的放热焓和低放热熵相互作用,其化学计量比低。我们的结果强调了蛋白质的大小、灵活性和电荷对于预测聚合物刷稳定的纳米粒子上蛋白质冠的形成是很重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8798/7818653/a928dc510fc6/mt0c01355_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验