Suppr超能文献

利用柔软表面使锥形纳米通道中的反向电渗析发电功率提高两倍。

Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces.

作者信息

Khatibi Mahdi, Sadeghi Arman, Ashrafizadeh Seyed Nezameddin

机构信息

Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.

出版信息

Phys Chem Chem Phys. 2021 Jan 28;23(3):2211-2221. doi: 10.1039/d0cp05974a.

Abstract

We theoretically investigate the feasibility of enhancing the reverse electrodialysis power generation in nanochannels by covering the surface with a polyelectrolyte layer (PEL). Along these lines, two conical nanochannels are considered that differ in the extent of the covering. Each nanochannel connects two large reservoirs filled with KCl electrolytes of different ionic concentrations. Considering the Poisson-Nernst-Planck and Navier-Brinkman equations, finite-element-based numerical simulations are performed under a steady-state. The influences of the PEL properties and the salinity gradient on the reverse electrodialysis characteristics are examined in detail via a thorough parametric study. It is shown that the maximum power generated is an increasing function of the charge density and the thickness of the PEL. This means that the maximum power generated may be theoretically increased to any desired degree by covering the nanochannel surface with a sufficiently dense and thick PEL. Considering a typical PEL with a charge density of 100 mol m-3 and a thickness of 8 nm along with a high-to-low concentration ratio of 1000, we demonstrate that it is possible to extract a power density of 51.5 W m-2, which is nearly three times the maximum achievable value employing bare conical nanochannels at the same salinity gradient.

摘要

我们从理论上研究了通过用聚电解质层(PEL)覆盖纳米通道表面来提高反向电渗析发电可行性。沿着这些思路,考虑了两个在覆盖程度上不同的锥形纳米通道。每个纳米通道连接两个充满不同离子浓度KCl电解质的大储液器。考虑到泊松 - 能斯特 - 普朗克方程和纳维 - 布林克曼方程,在稳态下进行基于有限元的数值模拟。通过全面的参数研究详细考察了PEL特性和盐度梯度对反向电渗析特性的影响。结果表明,产生的最大功率是PEL电荷密度和厚度的增函数。这意味着通过用足够致密和厚的PEL覆盖纳米通道表面,理论上产生的最大功率可以提高到任何期望的程度。考虑到电荷密度为100 mol m-3、厚度为8 nm的典型PEL以及1000的高 - 低浓度比,我们证明可以提取51.5 W m-2的功率密度,这几乎是在相同盐度梯度下使用裸锥形纳米通道可实现的最大值的三倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验