IEEE Trans Vis Comput Graph. 2022 Sep;28(9):3307-3323. doi: 10.1109/TVCG.2020.3045560. Epub 2022 Jul 29.
Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed, and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent, (iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy. In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive visualizations to enable human experts to utilize their knowledge more effectively.
可视化分析使机器学习模型与人类能够紧密结合在一个工作流程中,从而解决各种分析任务。每个任务都对分析师和决策者提出了不同的要求。在本调查中,我们专注于基于规则的分类的一种规范技术,即决策树分类器。我们提供了决策树的可用可视化的概述,重点介绍了可视化在 16 种任务方面的差异。此外,我们研究了所采用的视觉设计类型和呈现的质量度量。我们发现:(i) 用于分类器开发的交互式可视分析系统提供了多种视觉设计;(ii) 利用任务的涵盖范围很有限;(iii) 除了分类器开发之外,节点链接图无处不在;(iv) 即使是为机器学习专家设计的系统,也很少有除准确性以外的质量度量的可视表示。总之,我们认为有可能将算法技术、数学质量度量和定制的交互式可视化集成在一起,使人类专家能够更有效地利用他们的知识。