Suppr超能文献

膝关节骨关节炎的新型分类方法:机器学习应用与逻辑回归模型对比

Novel Method of Classification in Knee Osteoarthritis: Machine Learning Application Versus Logistic Regression Model.

作者信息

Yang Jung Ho, Park Jae Hyeon, Jang Seong-Ho, Cho Jaesung

机构信息

Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea.

Department of Rehabilitation Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.

出版信息

Ann Rehabil Med. 2020 Dec;44(6):415-427. doi: 10.5535/arm.20071. Epub 2020 Dec 31.

Abstract

OBJECTIVE

To present new classification methods of knee osteoarthritis (KOA) using machine learning and compare its performance with conventional statistical methods as classification techniques using machine learning have recently been developed.

METHODS

A total of 84 KOA patients and 97 normal participants were recruited. KOA patients were clustered into three groups according to the Kellgren-Lawrence (K-L) grading system. All subjects completed gait trials under the same experimental conditions. Machine learning-based classification using the support vector machine (SVM) classifier was performed to classify KOA patients and the severity of KOA. Logistic regression analysis was also performed to compare the results in classifying KOA patients with machine learning method.

RESULTS

In the classification between KOA patients and normal subjects, the accuracy of classification was higher in machine learning method than in logistic regression analysis. In the classification of KOA severity, accuracy was enhanced through the feature selection process in the machine learning method. The most significant gait feature for classification was flexion and extension of the knee in the swing phase in the machine learning method.

CONCLUSION

The machine learning method is thought to be a new approach to complement conventional logistic regression analysis in the classification of KOA patients. It can be clinically used for diagnosis and gait correction of KOA patients.

摘要

目的

介绍使用机器学习的膝关节骨关节炎(KOA)新分类方法,并将其性能与传统统计方法进行比较,因为最近已经开发出了使用机器学习的分类技术。

方法

共招募了84例KOA患者和97名正常参与者。根据Kellgren-Lawrence(K-L)分级系统将KOA患者分为三组。所有受试者在相同实验条件下完成步态试验。使用支持向量机(SVM)分类器进行基于机器学习的分类,以对KOA患者和KOA严重程度进行分类。还进行了逻辑回归分析,以比较使用机器学习方法对KOA患者进行分类的结果。

结果

在KOA患者与正常受试者之间的分类中,机器学习方法的分类准确率高于逻辑回归分析。在KOA严重程度分类中,通过机器学习方法中的特征选择过程提高了准确率。机器学习方法中用于分类的最显著步态特征是摆动期膝关节的屈伸。

结论

机器学习方法被认为是在KOA患者分类中补充传统逻辑回归分析的一种新方法。它可在临床上用于KOA患者的诊断和步态矫正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32da/7808787/6e37014f0c8b/arm-20071f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验