Suppr超能文献

基于视觉的方法利用人类步态模式检测膝关节骨关节炎和帕金森病。

Vision-based approach to knee osteoarthritis and Parkinson's disease detection utilizing human gait patterns.

作者信息

Ali Zeeshan, Moon Jihoon, Gillani Saira, Afzal Sitara, Maqsood Muazzam, Rho Seungmin

机构信息

Research and Development Setups, National University of Computer and Emerging Sciences, Islamabad, Pakistan.

Department of Data Science, Duksung Women's University, Seoul, Republic of South Korea.

出版信息

PeerJ Comput Sci. 2025 May 6;11:e2857. doi: 10.7717/peerj-cs.2857. eCollection 2025.

Abstract

Recently, the number of cases of musculoskeletal and neurological disorders, such as knee osteoarthritis (KOA) and Parkinson's disease (PD), has significantly increased. Numerous clinical methods have been proposed in research to diagnose these disorders; however, a current trend in diagnosis is through human gait patterns. Several researchers proposed different methods in this area, including gait detection utilizing sensor-based data and vision-based systems that include both marker-based and marker-free techniques. The majority of current studies are concerned with the classification of Parkinson's disease. Furthermore, many vision-based algorithms rely on human gait silhouettes or gait representations and employ traditional similarity-based methodologies. However, in this study, a novel approach is proposed in which spatiotemporal features are extracted deep learning methods with a transfer learning paradigm. Following that, advanced deep learning approaches, including sequential models like gated recurrent unit (GRU), are used for additional analysis. The experimentation is performed on the publicly available KOA-PD-normal dataset comprising gait videos with various abnormalities, and the proposed model has the highest accuracy of approximately 94.81%.

摘要

最近,肌肉骨骼和神经系统疾病的病例数量显著增加,如膝关节骨关节炎(KOA)和帕金森病(PD)。研究中已经提出了许多临床方法来诊断这些疾病;然而,目前的诊断趋势是通过人类步态模式。几位研究人员在这一领域提出了不同的方法,包括利用基于传感器的数据进行步态检测以及基于视觉的系统,其中包括基于标记和无标记技术。目前的大多数研究都关注帕金森病的分类。此外,许多基于视觉的算法依赖于人类步态轮廓或步态表示,并采用传统的基于相似度的方法。然而,在本研究中,提出了一种新颖的方法,即采用迁移学习范式的深度学习方法提取时空特征。随后,使用包括门控循环单元(GRU)等序列模型在内的先进深度学习方法进行进一步分析。实验是在公开可用的KOA-PD-正常数据集上进行的,该数据集包含具有各种异常情况的步态视频,所提出的模型具有约94.81%的最高准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4783/12192726/c0969b7e5a71/peerj-cs-11-2857-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验