Suppr超能文献

在质子治疗计划系统中使用解析微剂量学实现微观动力学模型。

Implementation of the microdosimetric kinetic model using analytical microdosimetry in a treatment planning system for proton therapy.

机构信息

Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia, PA, USA; Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain.

Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain.

出版信息

Phys Med. 2021 Jan;81:69-76. doi: 10.1016/j.ejmp.2020.11.024. Epub 2021 Jan 10.

Abstract

PURPOSE

To implement RBE calculations in treatment planning systems based on the Microdosimetric Kinetic Model (MKM) upon analytical calculations of dose-mean lineal energy (y). MKM relies on the patterns of energy deposition in sub-nuclear structures called domains, whose radii are cell-specific and need to be determined.

METHODS AND MATERIAL

The radius of a domain (r) can be determined from the linear-quadratic (LQ) curves from clonogenic experiments for different cell lines exposed to X-ray and proton beams with known y. In this work, LQ parameters for two different human lung cell lines (H1299 and H460) are used, and y among cells is calculated through an analytical algorithm. Once r is determined, MKM-based calculations of RBE are implemented in a treatment planning system (TPS). Results are compared to those produced by phenomenological models of RBE, such as Carabe and McNamara.

RESULTS

Differences between model-based predictions and experimentally determined RBE are analyzed for y=5 keV/μm. For the H1299 line, mean differences in RBE are 0.13, -0.29 and -0.27 for our MKM-based calculation, Carabe and McNamara models, respectively. For the H460 line, differences become -0.044, -0.091 and -0.048, respectively. RBE is computed for these models in a simple plan, showing MKM the best agreement with the experimentally obtained RBE, keeping deviations below 0.08.

CONCLUSIONS

Microdosimetry calculations at the TPS-level provide tools to improve predictions of RBE using the MKM with actual values of y instead of LET. The radius of the characteristic domain needs to be determined to tailor the RBE prediction for each cell or tissue.

摘要

目的

根据微剂量动力学模型(MKM)在剂量平均线性能量(y)的分析计算的基础上,在治疗计划系统中实现 RBE 计算。MKM 依赖于称为域的亚核结构中能量沉积的模式,其半径是细胞特异性的,需要确定。

方法与材料

域的半径(r)可以通过在 X 射线和质子束下暴露的不同细胞系的克隆形成实验的线性二次(LQ)曲线确定,已知 y。在这项工作中,使用了两种不同的人肺癌细胞系(H1299 和 H460)的 LQ 参数,通过分析算法计算细胞间的 y。一旦 r 确定,就可以在治疗计划系统(TPS)中实现基于 MKM 的 RBE 计算。结果与 RBE 的唯象模型(如 Carabe 和 McNamara)产生的结果进行比较。

结果

对于 y=5 keV/μm,分析了模型预测与实验确定的 RBE 之间的差异。对于 H1299 系,我们基于 MKM 的计算、Carabe 和 McNamara 模型的 RBE 平均差异分别为 0.13、-0.29 和-0.27。对于 H460 系,差异分别变为-0.044、-0.091 和-0.048。在一个简单的计划中计算这些模型的 RBE,表明 MKM 与实验获得的 RBE 最吻合,偏差保持在 0.08 以下。

结论

TPS 级别的微剂量计算为使用 MKM 进行 RBE 预测提供了工具,该方法使用实际的 y 值而不是 LET 值来提高预测。需要确定特征域的半径,以针对每个细胞或组织定制 RBE 预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验