Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia, PA, USA; Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain.
Department of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Seville, Spain.
Phys Med. 2021 Jan;81:69-76. doi: 10.1016/j.ejmp.2020.11.024. Epub 2021 Jan 10.
To implement RBE calculations in treatment planning systems based on the Microdosimetric Kinetic Model (MKM) upon analytical calculations of dose-mean lineal energy (y). MKM relies on the patterns of energy deposition in sub-nuclear structures called domains, whose radii are cell-specific and need to be determined.
The radius of a domain (r) can be determined from the linear-quadratic (LQ) curves from clonogenic experiments for different cell lines exposed to X-ray and proton beams with known y. In this work, LQ parameters for two different human lung cell lines (H1299 and H460) are used, and y among cells is calculated through an analytical algorithm. Once r is determined, MKM-based calculations of RBE are implemented in a treatment planning system (TPS). Results are compared to those produced by phenomenological models of RBE, such as Carabe and McNamara.
Differences between model-based predictions and experimentally determined RBE are analyzed for y=5 keV/μm. For the H1299 line, mean differences in RBE are 0.13, -0.29 and -0.27 for our MKM-based calculation, Carabe and McNamara models, respectively. For the H460 line, differences become -0.044, -0.091 and -0.048, respectively. RBE is computed for these models in a simple plan, showing MKM the best agreement with the experimentally obtained RBE, keeping deviations below 0.08.
Microdosimetry calculations at the TPS-level provide tools to improve predictions of RBE using the MKM with actual values of y instead of LET. The radius of the characteristic domain needs to be determined to tailor the RBE prediction for each cell or tissue.
根据微剂量动力学模型(MKM)在剂量平均线性能量(y)的分析计算的基础上,在治疗计划系统中实现 RBE 计算。MKM 依赖于称为域的亚核结构中能量沉积的模式,其半径是细胞特异性的,需要确定。
域的半径(r)可以通过在 X 射线和质子束下暴露的不同细胞系的克隆形成实验的线性二次(LQ)曲线确定,已知 y。在这项工作中,使用了两种不同的人肺癌细胞系(H1299 和 H460)的 LQ 参数,通过分析算法计算细胞间的 y。一旦 r 确定,就可以在治疗计划系统(TPS)中实现基于 MKM 的 RBE 计算。结果与 RBE 的唯象模型(如 Carabe 和 McNamara)产生的结果进行比较。
对于 y=5 keV/μm,分析了模型预测与实验确定的 RBE 之间的差异。对于 H1299 系,我们基于 MKM 的计算、Carabe 和 McNamara 模型的 RBE 平均差异分别为 0.13、-0.29 和-0.27。对于 H460 系,差异分别变为-0.044、-0.091 和-0.048。在一个简单的计划中计算这些模型的 RBE,表明 MKM 与实验获得的 RBE 最吻合,偏差保持在 0.08 以下。
TPS 级别的微剂量计算为使用 MKM 进行 RBE 预测提供了工具,该方法使用实际的 y 值而不是 LET 值来提高预测。需要确定特征域的半径,以针对每个细胞或组织定制 RBE 预测。