Ahmad Reem, Barcellini Amelia, Baumann Kilian, Benje Malte, Bender Tamara, Bragado Paloma, Charalampopoulou Alexandra, Chowdhury Reema, Davis Anthony J, Ebner Daniel K, Eley John, Kloeber Jake A, Mutter Robert W, Friedrich Thomas, Gutierrez-Uzquiza Alvaro, Helm Alexander, Ibáñez-Moragues Marta, Iturri Lorea, Jansen Jeannette, Morcillo Miguel Ángel, Puerta Daniel, Kokko Anggraeini Puspitasari, Sánchez-Parcerisa Daniel, Scifoni Emanuele, Shimokawa Takashi, Sokol Olga, Story Michael D, Thariat Juliette, Tinganelli Walter, Tommasino Francesco, Vandevoorde Charlot, von Neubeck Cläre
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
Int J Part Ther. 2024 Aug 8;13:100626. doi: 10.1016/j.ijpt.2024.100626. eCollection 2024 Sep.
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
粒子疗法(PT)是癌症治疗领域的一项重大进展,由于带电粒子独特的深度剂量分布,它能够精确靶向肿瘤细胞,同时保护周围的健康组织。此外,它们的线性能量传递和相对生物效能增强了其治疗包括缺氧肿瘤在内的放射抗拒性肿瘤的能力。多年来,广泛的研究为粒子疗法的临床应用铺平了道路,目前的工作旨在提高其疗效和精准度,将毒性降至最低。在这方面,放射生物学研究正在朝着整合生物技术以推进药物研发和放疗优化的方向发展。从基础放射生物学到理解粒子疗法分子机制的这一转变,旨在通过创新的剂量递送方案和联合治疗方法来扩大治疗窗口。这篇综述由来自不同国家的30多位撰稿人撰写,全面审视了粒子疗法放射生物学的关键研究领域和新进展,强调了正在改变该领域的创新和技术,从新的照射模式的放射生物学到多模态放射治疗以及模型构建工作。我们既强调了进展,也指出了知识空白,目的是增进对粒子疗法在肿瘤学中的理解和应用。