Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA.
Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.
Med Phys. 2024 Oct;51(10):7589-7605. doi: 10.1002/mp.17337. Epub 2024 Aug 17.
Phenomenological relative biological effectiveness (RBE) models for proton therapy, based on the dose-averaged linear energy transfer (LET), have been developed to address the apparent RBE increase towards the end of the proton range. The results of these phenomenological models substantially differ due to varying empirical assumptions and fitting functions. In contrast, more theory-based approaches are used in carbon ion radiotherapy, such as the microdosimetric kinetic model (MKM). However, implementing microdosimetry-based models in LET-based proton therapy treatment planning systems poses challenges.
This work presents a LET-based version of the MKM that is practical for clinical use in proton radiotherapy.
At first, we derived an approximation of the Mayo Clinic Florida (MCF) MKM for relatively-sparsely ionizing radiation such as protons. The mathematical formalism of the proposed model is equivalent to the original MKM, but it maintains some key features of the MCF MKM, such as the determination of model parameters from measurable cell characteristics. Subsequently, we carried out Monte Carlo calculations with PHITS in different simulated scenarios to establish a heuristic correlation between microdosimetric quantities and the dose averaged LET of protons.
A simple allometric function was found able to describe the relationship between the dose-averaged LET of protons and the dose-mean lineal energy, which includes the contributions of secondary particles. The LET-based MKM was used to model the in vitro clonogenic survival RBE of five human and rodent cell lines (A549, AG01522, CHO, T98G, and U87) exposed to pristine and spread-out Bragg peak (SOBP) proton beams. The results of the LET-based MKM agree well with the biological data in a comparable or better way with respect to the other models included in the study. A sensitivity analysis on the model results was also performed.
The LET-based MKM integrates the predictive theoretical framework of the MCF MKM with a straightforward mathematical description of the RBE based on the dose-averaged LET, a physical quantity readily available in modern treatment planning systems for proton therapy.
基于剂量平均线性能量传递(LET)的质子治疗现象学相对生物效应(RBE)模型已经被开发出来,以解决质子射程末端RBE 增加的问题。这些现象学模型的结果由于不同的经验假设和拟合函数而有很大差异。相比之下,碳离子放射治疗中更多地使用基于理论的方法,例如微剂量动力学模型(MKM)。然而,在基于 LET 的质子治疗计划系统中实施基于微剂量的模型存在挑战。
本工作提出了一种适用于质子放射治疗临床应用的基于 LET 的 MKM 版本。
首先,我们为质子等相对稀疏电离辐射推导了佛罗里达梅奥诊所(MCF)MKM 的近似。所提出模型的数学形式与原始 MKM 相同,但保留了 MCF MKM 的一些关键特征,例如通过可测量的细胞特征确定模型参数。随后,我们使用 PHITS 在不同的模拟场景中进行蒙特卡罗计算,以建立微剂量学量与质子剂量平均 LET 之间的启发式相关性。
发现一个简单的幂函数能够描述质子剂量平均 LET 与剂量平均线性能量之间的关系,其中包括次级粒子的贡献。基于 LET 的 MKM 用于模拟五个人类和啮齿动物细胞系(A549、AG01522、CHO、T98G 和 U87)暴露于原始和展宽布拉格峰(SOBP)质子束的体外克隆形成生存 RBE。基于 LET 的 MKM 的结果与生物学数据非常吻合,在研究中包含的其他模型中具有可比性或更好的一致性。还对模型结果进行了敏感性分析。
基于 LET 的 MKM 将 MCF MKM 的预测理论框架与基于剂量平均 LET 的 RBE 的直接数学描述相结合,剂量平均 LET 是现代质子治疗计划系统中易于获得的物理量。