Suppr超能文献

用于形成微结构水凝胶的类弹性蛋白多肽/聚乙二醇溶液的水相液-液相分离

Aqueous Liquid-Liquid Phase Separation of Resilin-Like Polypeptide/Polyethylene Glycol Solutions for the Formation of Microstructured Hydrogels.

作者信息

Lau Hang Kuen, Li Linqing, Jurusik Anna K, Sabanayagam Chandran R, Kiick Kristi L

机构信息

Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States.

Delaware Biotechnology Institute, 15 Innovation Way, Newark Delaware 19711, United States.

出版信息

ACS Biomater Sci Eng. 2017 May 8;3(5):757-766. doi: 10.1021/acsbiomaterials.6b00076. Epub 2016 Jun 20.

Abstract

Multiple approaches to generate microstructured hydrogels have emerged in order to control microscale properties for applications ranging from mechanical reinforcement to regenerative medicine. Here, we report new heterogeneous hybrid hydrogels comprising emerging resilin-like polypeptides (RLPs); the hydrogels can be engineered with controlled microstructure and distinct micromechanical properties via the liquid-liquid phase separation (LLPS) of aqueous solutions of the RLPs and poly(ethylene glycol) (PEG). The microstructure in the hydrogels was captured by cross-linking a phase-separated RLP and PEG solution via a Mannich-type reaction with the cross-linker tris(hydroxymethyl phosphine) (THP). Phase diagrams of the RLP/PEG system were generated in order to define solution parameters that would yield micron-scale domains in the hydrogels with diameters on the order of 20-90 μm; the production of RLP- and PEG-rich domains with these dimensions was confirmed via confocal microscopy. The hydrogel mechanical properties were assessed via oscillatory rheology and atomic force microscopy (AFM), with the hydrogels exhibiting a moderate bulk shear storage modulus (ca. 600 Pa) and micromechanical properties of the domains (Young's modulus ca. 13 kPa) that were distinct from those of the matrix (ca. 6 kPa). These results demonstrate that tuning the parameters of the aqueous-aqueous phase-separated RLP/PEG solutions provides a simple, straightforward methodology for fabricating microstructured protein-containing hydrogels, without extensive material processing or purification. Given the unusual mechanical properties of the resilins, these methods potentially could be useful for engineering the micromechanical properties and cellular behavior in phase-separated protein-polymer hydrogels.

摘要

为了控制从机械增强到再生医学等应用的微观尺度特性,已经出现了多种制备微结构水凝胶的方法。在此,我们报道了一种新型的异质混合水凝胶,其包含新出现的类弹性蛋白多肽(RLP);通过RLP和聚乙二醇(PEG)水溶液的液-液相分离(LLPS),可以设计出具有可控微观结构和独特微机械性能的水凝胶。通过与交联剂三(羟甲基膦)(THP)进行曼尼希型反应,使相分离的RLP和PEG溶液交联,从而捕获水凝胶中的微观结构。生成RLP/PEG系统的相图,以确定能在水凝胶中产生直径约为20 - 90μm的微米级区域的溶液参数;通过共聚焦显微镜证实了具有这些尺寸的富含RLP和PEG的区域的产生。通过振荡流变学和原子力显微镜(AFM)评估水凝胶的机械性能,水凝胶表现出适度的体积剪切储能模量(约600 Pa)以及区域的微机械性能(杨氏模量约13 kPa),这些性能与基质的性能(约6 kPa)不同。这些结果表明,调节水-水相分离的RLP/PEG溶液的参数,为制备含微结构蛋白质的水凝胶提供了一种简单直接的方法,无需大量的材料加工或纯化。鉴于弹性蛋白具有不同寻常的机械性能,这些方法可能有助于设计相分离的蛋白质-聚合物水凝胶中的微机械性能和细胞行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验