Department of Artificial Intelligence, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain.
University Institute for Automobile Research (INSIA-UPM), 28031 Madrid, Spain.
Sensors (Basel). 2021 Jan 11;21(2):475. doi: 10.3390/s21020475.
Most of the tactic manoeuvres during driving require a certain understanding of the surrounding environment from which to devise our future behaviour. In this paper, a Convolutional Neural Network (CNN) approach is used to model the lane change behaviour to identify when a driver is going to perform this manoeuvre. To that end, a slightly modified CNN architecture adapted to both spatial (i.e., surrounding environment) and non-spatial (i.e., rest of variables such as relative speed to the front vehicle) input variables. Anticipating a driver's lane change intention means it is possible to use this information as a new source of data in wide range of different scenarios. One example of such scenarios might be the decision making process support for human drivers through Advanced Driver Assistance Systems (ADAS) fed with the data of the surrounding cars in an inter-vehicular network. Another example might even be its use in autonomous vehicles by using the data of a specific driver profile to make automated driving more human-like. Several CNN architectures have been tested on a simulation environment to assess their performance. Results show that the selected architecture provides a higher degree of accuracy than random guessing (i.e., assigning a class randomly for each observation in the data set), and it can capture subtle differences in behaviour between different driving profiles.
在驾驶过程中,大多数策略操作都需要对周围环境有一定的了解,以便我们设计未来的行为。在本文中,我们使用卷积神经网络(CNN)方法来对变道行为进行建模,以识别驾驶员何时执行此操作。为此,我们对稍微修改后的 CNN 架构进行了调整,以适应空间(即周围环境)和非空间(即与前车的相对速度等其他变量)输入变量。预测驾驶员的变道意图意味着可以将此信息用作各种不同场景中的新数据源。例如,通过使用车联网中周围车辆的数据为高级驾驶员辅助系统(ADAS)提供决策支持,为人类驾驶员提供支持。另一个例子甚至可以在自动驾驶车辆中使用特定驾驶员档案的数据,使自动驾驶更具人性化。已经在模拟环境中测试了几种 CNN 架构,以评估它们的性能。结果表明,所选架构的准确性高于随机猜测(即,为数据集中的每个观察分配一个随机类别),并且它可以捕获不同驾驶档案之间行为的细微差异。