Viney Lydia, Bürckstümmer Tilmann, Eddington Courtnee, Mietzsch Mario, Choudhry Modassir, Henley Tom, Agbandje-McKenna Mavis
Intima Bioscience, New York, New York, USA.
Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.
J Virol. 2021 Mar 10;95(7). doi: 10.1128/JVI.02023-20. Epub 2021 Jan 13.
Adeno-associated viruses (AAV) have attracted significant attention in the field of gene and cell therapy due to highly effective delivery of therapeutic genes into human cells. The ability to generate recombinant AAV vectors compromised of unique or substituted protein sequences has led to the development of capsid variants with improved therapeutic properties. Seeking novel AAV vectors capable of enhanced transduction for therapeutic applications, we have developed a series of unique capsid variants termed AAV (AAV-XV) derived from chimeras of AAV12 VP1/2 sequences and the VP3 sequence of AAV6. These AAV variants showed enhanced infection of human primary T cells, hematopoietic stem cells, and neuronal cell lines over wildtype parental viruses, and superiority over AAV6 for genomic integration of DNA sequences by AAV alone or in combination with CRISPR gene editing. AAV-XV variants demonstrate transduction efficiency equivalent to AAV6 at multiplicities of infection 2 logs lower, enabling T cell engineering at low AAV doses. The protein coding sequence of these novel AAV chimeras revealed disruptions within the assembly-activating protein (AAP) which likely accounted for observed lower virus yield. A series of genome alterations, reverting the AAP sequence back to wildtype AAV6, had a negative impact on the enhanced transduction seen with AAV-VX, indicating overlapping functions within this sequence for both viral assembly and effective T cell transduction. Our findings show these AAV-XV variants are highly efficient at cell transduction at low dose and demonstrates the importance of the AAP coding region in both viral particle assembly and cell infection. A major hurdle to the therapeutic potential of AAV in gene therapy lies in achieving clinically meaningful AAV doses, and secondarily, ability to manufacture commercially viable titers of AAV to support this. By virtue of neutralizing antibodies against AAV that impede patient repeat-dosing, the dose of AAV for gene delivery has been high, which has resulted in unfortunate recent safety concerns and deaths in patients given higher-dose AAV gene therapy. We have generated new AAV variants possessing unique combinations of capsid proteins for gene and cell therapy applications termed AAV-XV, which have high levels of cell transduction and gene delivery at lower MOI. Furthermore, we demonstrate a novel finding, and an important consideration for recombinant AAV design, that a region of the AAV genome encoding the capsid viral protein and AAP is critical for both virus yield and the enhancement of infection/transduction.
腺相关病毒(AAV)由于能将治疗性基因高效递送至人类细胞,在基因和细胞治疗领域备受关注。生成由独特或替代蛋白序列组成的重组AAV载体的能力,促使了具有改善治疗特性的衣壳变体的开发。为了寻找能够增强转导用于治疗应用的新型AAV载体,我们开发了一系列独特的衣壳变体,称为AAV (AAV-XV),其源自AAV12 VP1/2序列与AAV6的VP3序列的嵌合体。这些AAV变体相较于野生型亲本病毒,对人类原代T细胞、造血干细胞和神经元细胞系的感染增强,并且在单独使用AAV或与CRISPR基因编辑联合使用时,在DNA序列的基因组整合方面优于AAV6。AAV-XV变体在感染复数低2个对数时表现出与AAV6相当的转导效率,能够在低AAV剂量下进行T细胞工程改造。这些新型AAV嵌合体的蛋白质编码序列显示在装配激活蛋白(AAP)内存在破坏,这可能是观察到病毒产量较低的原因。一系列基因组改变,将AAP序列恢复为野生型AAV6,对AAV-VX所见的增强转导产生了负面影响,表明该序列在病毒装配和有效的T细胞转导中具有重叠功能。我们的研究结果表明,这些AAV-XV变体在低剂量下对细胞转导非常高效,并证明了AAP编码区域在病毒颗粒装配和细胞感染中的重要性。AAV在基因治疗中的治疗潜力的一个主要障碍在于实现具有临床意义的AAV剂量,其次是能够生产商业上可行的AAV滴度以支持这一点。由于针对AAV的中和抗体阻碍患者重复给药,用于基因递送的AAV剂量一直很高,这导致了近期不幸的安全问题以及接受高剂量AAV基因治疗的患者死亡。我们已经生成了用于基因和细胞治疗应用的具有独特衣壳蛋白组合的新型AAV变体,称为AAV-XV,其在较低的感染复数下具有高水平的细胞转导和基因递送。此外,我们证明了一个新发现,这是重组AAV设计的一个重要考虑因素,即AAV基因组中编码衣壳病毒蛋白和AAP的区域对于病毒产量以及感染/转导的增强至关重要。