Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC, Canada.
Assistance Publique des Hôpitaux de Paris, 149 avenue Victoria, 75004, Paris, France.
Sci Rep. 2021 Jan 13;11(1):878. doi: 10.1038/s41598-020-79577-4.
Yarrowia lipolytica is a non-conventional yeast with promising industrial potentials for lipids and citrate production. It is also widely used for studying mitochondrial respiration due to a respiratory chain like those of mammalian cells. In this study we used a genome-scale model (GEM) of Y. lipolytica metabolism and performed a dynamic Flux Balance Analysis (dFBA) algorithm to analyze and identify metabolic levers associated with citrate optimization. Analysis of fluxes at stationary growth phase showed that carbon flux derived from glucose is rewired to citric acid production and lipid accumulation, whereas the oxidative phosphorylation (OxPhos) shifted to the alternative respiration mode through alternative oxidase (AOX) protein. Simulations of optimized citrate secretion flux resulted in a pronounced lipid oxidation along with reactive oxygen species (ROS) generation and AOX flux inhibition. Then, we experimentally challenged AOX inhibition by adding n-Propyl Gallate (nPG), a specific AOX inhibitor, on Y. lipolytica batch cultures at stationary phase. Our results showed a twofold overproduction of citrate (20.5 g/L) when nPG is added compared to 10.9 g/L under control condition (no nPG addition). These results suggest that ROS management, especially through AOX activity, has a pivotal role on citrate/lipid flux balance in Y. lipolytica. All taken together, we thus provide for the first time, a key for the understanding of a predominant metabolic mechanism favoring citrate overproduction in Y. lipolytica at the expense of lipids accumulation.
解脂耶氏酵母是一种非常规酵母,具有生产油脂和柠檬酸的巨大工业潜力。由于其呼吸链类似于哺乳动物细胞,因此也被广泛用于研究线粒体呼吸。在本研究中,我们使用了解脂耶氏酵母代谢的基因组规模模型(GEM),并进行了动态通量平衡分析(dFBA)算法,以分析和确定与柠檬酸优化相关的代谢杠杆。在静止生长阶段的通量分析表明,来自葡萄糖的碳通量被重新布线用于柠檬酸生产和脂质积累,而氧化磷酸化(OxPhos)通过替代氧化酶(AOX)蛋白转移到替代呼吸模式。优化的柠檬酸分泌通量的模拟导致明显的脂质氧化以及活性氧(ROS)的产生和 AOX 通量的抑制。然后,我们通过在静止期的分批培养物中添加特定的 AOX 抑制剂 n-丙基没食子酸(nPG),在实验上挑战了 AOX 抑制。与对照条件(未添加 nPG)下的 10.9 g/L 相比,添加 nPG 时柠檬酸的产量增加了两倍(20.5 g/L)。这些结果表明,ROS 管理,特别是通过 AOX 活性,在解脂耶氏酵母中柠檬酸/脂质通量平衡中起着关键作用。综上所述,我们首次提供了一个关键,用于理解在解脂耶氏酵母中有利于柠檬酸过度生产而牺牲脂质积累的主要代谢机制。