Li Shisong, Schlamminger Stephan, Marangoni Rafael, Wang Qing, Haddad Darine, Seifert Frank, Chao Leon, Newell David, Zhao Wei
Department of Engineering, Durham University, Durham, DH1 3LE, UK.
National Institute of Standards and Technology, Gaithersburg, 20899, USA.
Sci Rep. 2021 Jan 13;11(1):1048. doi: 10.1038/s41598-020-80173-9.
Employing very simple electro-mechanical principles known from classical physics, the Kibble balance establishes a very precise and absolute link between quantum electrical standards and macroscopic mass or force measurements. The success of the Kibble balance, in both determining fundamental constants (h, [Formula: see text], e) and realizing a quasi-quantum mass in the 2019 newly revised International System of Units, relies on the perfection of Maxwell's equations and the symmetry they describe between Lorentz's force and Faraday's induction, a principle and a symmetry stunningly demonstrated in the weighing and velocity modes of Kibble balances to within [Formula: see text], with nothing but imperfect wires and magnets. However, recent advances in the understanding of the current effect in Kibble balances reveal a troubling paradox. A diamagnetic effect, a force that does not cancel between mass-on and mass-off measurement, is challenging balance maker's assumptions of symmetry at levels that are almost two orders of magnitude larger than the reported uncertainties. The diamagnetic effect, if it exists, shows up in weighing mode without a readily apparent reciprocal effect in the velocity mode, begging questions about systematic errors at the very foundation of the new measurement system. The hypothetical force is caused by the coil current changing the magnetic field, producing an unaccounted force that is systematically modulated with the weighing current. Here we show that this diamagnetic force exists, but the additional force does not change the equivalence between weighing and velocity measurements. We reveal the unexpected way that symmetry is preserved and show that for typical materials and geometries the total relative effect on the measurement is [Formula: see text].
利用经典物理学中已知的非常简单的机电原理,基布尔天平在量子电学标准与宏观质量或力的测量之间建立了非常精确和绝对的联系。基布尔天平在确定基本常数(h、[公式:见原文]、e)以及在2019年新修订的国际单位制中实现准量子质量方面的成功,依赖于麦克斯韦方程组的完善以及它们所描述的洛伦兹力和法拉第感应之间的对称性,这一原理和对称性在基布尔天平的称重和速度模式中惊人地得到了验证,误差在[公式:见原文]以内,所用的不过是不完美的导线和磁体。然而,最近在理解基布尔天平中电流效应方面的进展揭示了一个令人不安的悖论。一种抗磁效应,即在质量加载和质量卸载测量之间不会抵消的力,正在挑战天平制造商对于对称性的假设,其程度几乎比所报告的不确定度大两个数量级。这种抗磁效应如果存在,会在称重模式中显现出来,而在速度模式中却没有明显的反向效应,这就引发了关于新测量系统基础层面系统误差的问题。这种假设的力是由线圈电流改变磁场引起的,产生了一种未被考虑的力,该力会随着称重电流而系统地调制。在这里我们表明这种抗磁力是存在的,但这种额外的力并不会改变称重和速度测量之间的等效性。我们揭示了对称性得以保持的意想不到的方式,并表明对于典型的材料和几何形状,对测量的总相对效应为[公式:见原文]。