Suppr超能文献

二氟硼 β-二酮酸聚乳酸氧纳米传感器用于细胞内神经元成像。

Difluoroboron β-diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging.

机构信息

Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.

Department of Neurology, University of Virginia, Charlottesville, VA, 22903, USA.

出版信息

Sci Rep. 2021 Jan 13;11(1):1076. doi: 10.1038/s41598-020-80172-w.

Abstract

Critical for metabolism, oxygen plays an essential role in maintaining the structure and function of neurons. Oxygen sensing is important in common neurological disorders such as strokes, seizures, or neonatal hypoxic-ischemic injuries, which result from an imbalance between metabolic demand and oxygen supply. Phosphorescence quenching by oxygen provides a non-invasive optical method to measure oxygen levels within cells and tissues. Difluoroboron β-diketonates are a family of luminophores with high quantum yields and tunable fluorescence and phosphorescence when embedded in certain rigid matrices such as poly (lactic acid) (PLA). Boron nanoparticles (BNPs) can be fabricated from dye-PLA materials for oxygen mapping in a variety of biological milieu. These dual-emissive nanoparticles have oxygen-insensitive fluorescence, oxygen-sensitive phosphorescence, and rigid matrix all in one, enabling real-time ratiometric oxygen sensing at micron-level spatial and millisecond-level temporal resolution. In this study, BNPs are applied in mouse brain slices to investigate oxygen distributions and neuronal activity. The optical properties and physical stability of BNPs in a biologically relevant buffer were stable. Primary neuronal cultures were labeled by BNPs and the mitochondria membrane probe MitoTracker Red FM. BNPs were taken up by neuronal cell bodies, at dendrites, and at synapses, and the localization of BNPs was consistent with that of MitoTracker Red FM. The brain slices were stained with the BNPs, and the BNPs did not significantly affect the electrophysiological properties of neurons. Oxygen maps were generated in living brain slices where oxygen is found to be mostly consumed by mitochondria near synapses. Finally, the BNPs exhibited excellent response when the conditions varied from normoxic to hypoxic and when the neuronal activity was increased by increasing K concentration. This work demonstrates the capability of BNPs as a non-invasive tool in oxygen sensing and could provide fundamental insight into neuronal mechanisms and excitability research.

摘要

氧气对代谢至关重要,在维持神经元的结构和功能方面起着重要作用。氧气感应在常见的神经疾病中很重要,如中风、癫痫或新生儿缺氧缺血性损伤,这些疾病是由于代谢需求和氧气供应之间的不平衡引起的。氧气的磷光猝灭为测量细胞和组织内的氧气水平提供了一种非侵入性的光学方法。二氟硼 β-二酮是一类具有高光量子产率和可调荧光和磷光的发光体,当嵌入某些刚性基质(如聚乳酸)(PLA)中时。硼纳米粒子(BNP)可以由染料-PLA 材料制造,用于在各种生物环境中进行氧映射。这些双发射纳米粒子具有氧气不敏感的荧光、氧气敏感的磷光和刚性基质,使其能够在微米级空间和毫秒级时间分辨率下进行实时比率氧感应。在这项研究中,BNP 被应用于小鼠脑切片中,以研究氧分布和神经元活动。BNP 在生物相关缓冲液中的光学性质和物理稳定性稳定。原代神经元培养物通过 BNPs 和线粒体膜探针 MitoTracker Red FM 进行标记。BNP 被神经元细胞体、树突和突触摄取,BNP 的定位与 MitoTracker Red FM 的定位一致。脑切片用 BNPs 染色,BNPs 对神经元的电生理性质没有显著影响。在活脑切片中生成了氧图,发现氧主要被突触附近的线粒体消耗。最后,当条件从正常氧变为缺氧,并且通过增加 K 浓度增加神经元活动时,BNP 表现出出色的响应。这项工作证明了 BNPs 作为一种非侵入性氧气感应工具的能力,并为神经元机制和兴奋性研究提供了基本的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd6/7806623/17ee910cb6d2/41598_2020_80172_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验