Suppr超能文献

比较深度学习与传统模型预测心力衰竭患者可预防急性护理的使用和支出。

Comparison of deep learning with traditional models to predict preventable acute care use and spending among heart failure patients.

机构信息

Diagnostic Robotics Inc., Tel Aviv, Israel.

US Acute Care Solutions, Canton, OH, USA.

出版信息

Sci Rep. 2021 Jan 13;11(1):1164. doi: 10.1038/s41598-020-80856-3.

Abstract

Recent health reforms have created incentives for cardiologists and accountable care organizations to participate in value-based care models for heart failure (HF). Accurate risk stratification of HF patients is critical to efficiently deploy interventions aimed at reducing preventable utilization. The goal of this paper was to compare deep learning approaches with traditional logistic regression (LR) to predict preventable utilization among HF patients. We conducted a prognostic study using data on 93,260 HF patients continuously enrolled for 2-years in a large U.S. commercial insurer to develop and validate prediction models for three outcomes of interest: preventable hospitalizations, preventable emergency department (ED) visits, and preventable costs. Patients were split into training, validation, and testing samples. Outcomes were modeled using traditional and enhanced LR and compared to gradient boosting model and deep learning models using sequential and non-sequential inputs. Evaluation metrics included precision (positive predictive value) at k, cost capture, and Area Under the Receiver operating characteristic (AUROC). Deep learning models consistently outperformed LR for all three outcomes with respect to the chosen evaluation metrics. Precision at 1% for preventable hospitalizations was 43% for deep learning compared to 30% for enhanced LR. Precision at 1% for preventable ED visits was 39% for deep learning compared to 33% for enhanced LR. For preventable cost, cost capture at 1% was 30% for sequential deep learning, compared to 18% for enhanced LR. The highest AUROCs for deep learning were 0.778, 0.681 and 0.727, respectively. These results offer a promising approach to identify patients for targeted interventions.

摘要

最近的医疗改革为心脏病专家和责任医疗组织参与心力衰竭(HF)的基于价值的护理模式创造了激励措施。准确的 HF 患者风险分层对于有效部署旨在减少可预防利用的干预措施至关重要。本文的目的是比较深度学习方法与传统逻辑回归(LR),以预测 HF 患者的可预防利用。我们使用在美国一家大型商业保险公司连续登记的 93260 名 HF 患者的数据进行了一项预后研究,以开发和验证三个感兴趣结果的预测模型:可预防的住院治疗、可预防的急诊部(ED)就诊和可预防的成本。患者被分为训练、验证和测试样本。使用传统和增强型 LR 对结果进行建模,并与梯度提升模型和使用顺序和非顺序输入的深度学习模型进行比较。评估指标包括精度(阳性预测值)在 k、成本捕获和接收器操作特性曲线(AUROC)下面积。深度学习模型在所有三个结果的选择评估指标方面始终优于 LR。可预防住院的精度为 1%,深度学习为 43%,增强型 LR 为 30%。可预防 ED 就诊的精度为 1%,深度学习为 39%,增强型 LR 为 33%。对于可预防成本,顺序深度学习的成本捕获为 1%,为 30%,增强型 LR 为 18%。深度学习的最高 AUROCs 分别为 0.778、0.681 和 0.727。这些结果为识别患者进行针对性干预提供了一种有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b41/7806727/2a4c2f695ba9/41598_2020_80856_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验