Jenner Adrianne L, Aogo Rosemary A, Alfonso Sofia, Crowe Vivienne, Smith Amanda P, Morel Penelope A, Davis Courtney L, Smith Amber M, Craig Morgan
CHU Sainte-Justine Research Centre, Montréal, Québec, Canada.
Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada.
bioRxiv. 2021 Jan 6:2021.01.05.425420. doi: 10.1101/2021.01.05.425420.
To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results indicate that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these patients, the maximum concentration of IL-6 was also a major predictor of CD8 T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation that was mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings identify biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation.
Understanding of how the immune system responds to SARS-CoV-2 infections is critical for improving diagnostic and treatment approaches. Identifying which immune mechanisms lead to divergent outcomes can be clinically difficult, and experimental models and longitudinal data are only beginning to emerge. In response, we developed a mechanistic, mathematical and computational model of the immunopathology of COVID-19 calibrated to and validated against a broad set of experimental and clinical immunological data. To study the drivers of severe COVID-19, we used our model to expand a cohort of virtual patients, each with realistic disease dynamics. Our results identify key processes that regulate the immune response to SARS-CoV-2 infection in virtual patients and suggest viable therapeutic targets, underlining the importance of a rational approach to studying novel pathogens using intra-host models.
为了解对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)免疫反应的多样性,并区分使个体易患重症2019冠状病毒病(COVID-19)的特征,我们开发了一个宿主内机制数学模型和虚拟患者队列。我们的结果表明,与那些具有早期且强烈干扰素(IFN)反应的虚拟患者相比,感染细胞衍生IFN产生率低的虚拟患者随后经历了高度炎症性疾病表型。在这些患者中,白细胞介素-6(IL-6)的最大浓度也是CD8 T细胞耗竭的主要预测指标。我们的分析预测,重症COVID-19患者还具有加速的单核细胞向巨噬细胞分化,这是由IL-6增加和I型IFN信号传导减少介导的。这些发现共同确定了驱动重症COVID-19发展的生物标志物,并支持旨在减轻炎症的早期干预措施。
了解免疫系统如何应对SARS-CoV-2感染对于改进诊断和治疗方法至关重要。确定哪些免疫机制导致不同结果在临床上可能具有挑战性,而实验模型和纵向数据才刚刚开始出现。作为回应,我们开发了一个COVID-19免疫病理学的机制性数学和计算模型,并根据大量实验和临床免疫学数据进行了校准和验证。为了研究重症COVID-19的驱动因素,我们使用我们的模型扩展了虚拟患者队列,每个患者都具有现实的疾病动态。我们的结果确定了在虚拟患者中调节对SARS-CoV-2感染免疫反应的关键过程,并提出了可行的治疗靶点,强调了使用宿主内模型以合理方法研究新型病原体的重要性。