Suppr超能文献

一种用于上皮组织中急性原发性病毒感染和免疫反应的多尺度、多细胞、时空建模的模块化框架及其在药物治疗时机和有效性方面的应用。

A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness.

作者信息

Sego T J, Aponte-Serrano Josua O, Ferrari Gianlupi Juliano, Heaps Samuel R, Breithaupt Kira, Brusch Lutz, Crawshaw Jessica, Osborne James M, Quardokus Ellen M, Plemper Richard K, Glazier James A

机构信息

Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America.

Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America.

出版信息

PLoS Comput Biol. 2020 Dec 21;16(12):e1008451. doi: 10.1371/journal.pcbi.1008451. eCollection 2020 Dec.

Abstract

Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository.

摘要

对像 COVID-19 这样的原发性急性病毒感染的组织特异性效应进行模拟,对于理解疾病结局和优化治疗方法至关重要。此类模拟需要支持根据对感染机制理解的快速进展进行持续更新,以及多个团队对组件的并行开发。我们提出了一个用于上皮组织、病毒感染、细胞免疫反应和组织损伤的多尺度时空模拟的开源平台,该平台经过专门设计,具有模块化和可扩展性,以支持持续更新和并行开发。对简化的上皮组织片和免疫反应进行的基础模拟展示了从广泛感染到复发再到清除的不同感染动态模式。较慢的病毒内化和较快的免疫细胞募集减缓了感染并促进了控制。由于抗病毒药物可能有副作用,并且在感染后期给药时临床效果会降低,因此我们研究了治疗效力和感染后首次治疗时间对病程的影响。在模拟中,即使是使用一种能大幅降低病毒 RNA 复制率的药物进行的低效治疗,在感染开始时给药也会大大降低总组织损伤和病毒载量。剂量和治疗时间的许多组合会导致随机结果,一些模拟副本显示清除或控制(治疗成功),而另一些则显示所有上皮细胞快速感染(治疗失败)。因此,虽然高效力治疗在后期给药时通常效果较差,但后期治疗偶尔也会有效。我们展示了如何使用我们的软件模块和公开可用的软件库来扩展该平台,以模拟特定病毒类型(例如丙型肝炎)并添加额外的细胞机制(组织恢复和细胞对感染的可变易感性)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d2c/7785254/738bcdbe7f23/pcbi.1008451.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验