Suppr超能文献

人为失误归因的不对称性:人机合作研究

Blame Attribution Asymmetry in Human-Automation Cooperation.

机构信息

College of Management and Economics, Tianjin University, Tianjin, China.

出版信息

Risk Anal. 2022 Aug;42(8):1769-1783. doi: 10.1111/risa.13674. Epub 2021 Jan 13.

Abstract

Human-automation cooperation has become ubiquitous. In this concept, automation refers to autonomous machines, robots, artificial intelligence, and other autonomous nonhuman agents. A human driver will share control of semiautonomous vehicles (semi-AVs) with an automated system and thus share responsibility for crashes caused by semi-AVs. Research has not clarified whether and why people would attribute different levels of blame and responsibility to automation (and its creators) and its human counterpart when each causes an equivalent crash. We conducted four experiments in two studies (total N = 1,045) to measure different responses (e.g., severity and acceptability judgment, blame and responsibility attribution, compensation judgment) to hypothetical crashes that are caused by the human or the automation in semi-AVs. The results provided previously unidentified evidence of a bias, which we called the "blame attribution asymmetry," a tendency that people will judge the automation-caused crash more harshly, ascribe more blame and responsibility to automation and its creators, and think the victim in this crash should be compensated more. This asymmetry arises in part because of the higher negative affect triggered by the automation-caused crash. This bias has a direct policy implication: a policy allowing "not-safe enough" semi-AVs on roads could backfire, because these AVs will lead to many traffic crashes, which might in turn produce greater psychological costs and deter more people from adopting them. Other theoretical and policy implications of our findings were also discussed.

摘要

人机协作已经无处不在。在这个概念中,自动化是指自主机器、机器人、人工智能和其他自主非人类代理。人类驾驶员将与自动化系统共同控制半自动驾驶汽车(semi-AV),因此将对半自动驾驶汽车造成的事故承担共同责任。研究尚未阐明,当自动化及其创造者和其人类对应物造成同等事故时,人们是否会以及为什么会对自动化(及其创造者)和其人类对应物产生不同程度的责备和责任。我们在两项研究中进行了四项实验(总计 N = 1,045),以衡量对半自动驾驶汽车中由人类或自动化引起的假设事故的不同反应(例如严重程度和可接受性判断、责备和责任归因、赔偿判断)。结果提供了以前未被识别的证据,证明存在一种偏见,我们称之为“责备归因不对称”,即人们会更严厉地判断自动化引起的事故,将更多的责备和责任归咎于自动化及其创造者,并认为在这种事故中的受害者应该得到更多的赔偿。这种不对称部分源于自动化引起的事故引发的更高的负面情绪。这种偏见具有直接的政策含义:允许“不够安全”的半自动驾驶汽车上路的政策可能会适得其反,因为这些自动驾驶汽车将导致许多交通事故,这反过来又会产生更大的心理成本,并阻止更多人采用它们。我们的研究结果还讨论了其他理论和政策方面的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验