Suppr超能文献

基于预碰撞场景类型学的自动驾驶车辆与传统车辆碰撞比较。

Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology.

机构信息

College of Transportation Engineering, Tongji University, Shanghai 201804, China; The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China.

College of Transportation Engineering, Tongji University, Shanghai 201804, China; The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China; National Engineering Laboratory for Integrated Optimization of Road Traffic and Safety Analysis Technologies, 88 Qianrong Rd, Wuxi 214151, China.

出版信息

Accid Anal Prev. 2021 Sep;159:106281. doi: 10.1016/j.aap.2021.106281. Epub 2021 Jul 14.

Abstract

Data-based research approaches to generate crash scenarios have mainly relied on conventional vehicle crashes and naturalistic driving data, and have not considered differences between the autonomous vehicle (AV) and conventional vehicle crashes. As the AV's presence on roadways continues to grow, its crash scenarios take on new importance for traffic safety. This study therefore obtained crash patterns using the United States Department of Transportation pre-crash scenario typology, and used statistical analysis to determine the differences between AV and conventional vehicle pre-crash scenarios. Analysis of 122 AV crashes and 2084 conventional vehicle crashes revealed 15 types of scenario for AVs and 26 for conventional vehicles. The two groups showed differences in type of scenario, and differed in the proportion of crashes when the scenario was the same. The most frequent AV pre-crash scenarios were rear-end collisions (52.46%) and lane change collisions (18.85%), with the proportion of AVs rear-ended by conventional vehicles occurring with a frequency 1.6 times that of conventional vehicles. An in-depth crash investigation was conducted of the characteristics and causes of four AV pre-crash scenarios, summarized from the perspectives of perception and path planning. The perception-reaction time (PRT) difference between AVs and human drivers, AV's inaccurate identification of the intention of other vehicles to change lanes, and AV's insufficient path planning combining time and space dimensions were found to be important causes for the AV crashes. By increasing understanding of the complex characteristics of AV pre-crash scenarios, this analysis will encourage cooperation with vehicle manufacturers and AV technology companies for further study of crash causation toward the goals of improved test scenario construction and optimization of the AV's automated driving system (ADS).

摘要

基于数据的研究方法主要依赖于传统车辆碰撞和自然驾驶数据来生成碰撞场景,而没有考虑自动驾驶汽车(AV)与传统车辆碰撞之间的差异。随着道路上自动驾驶汽车的数量不断增加,其碰撞场景对交通安全变得越来越重要。因此,本研究使用美国交通部的碰撞前场景类型学获取了碰撞模式,并使用统计分析来确定自动驾驶汽车和传统车辆碰撞前场景之间的差异。对 122 起自动驾驶汽车碰撞事故和 2084 起传统车辆碰撞事故的分析表明,自动驾驶汽车有 15 种场景类型,传统车辆有 26 种场景类型。这两组数据在场景类型上存在差异,在相同场景下的碰撞比例也存在差异。最常见的自动驾驶汽车碰撞前场景是追尾碰撞(52.46%)和变道碰撞(18.85%),而传统车辆追尾自动驾驶汽车的比例是传统车辆被追尾的 1.6 倍。对从感知和路径规划角度总结出的四个自动驾驶汽车碰撞前场景的特点和原因进行了深入的碰撞调查。研究发现,自动驾驶汽车和人类驾驶员之间的感知-反应时间(PRT)差异、自动驾驶汽车对其他车辆变道意图的不准确识别,以及自动驾驶汽车在时空维度上对路径规划的不足,是导致自动驾驶汽车碰撞的重要原因。通过增加对自动驾驶汽车碰撞前场景复杂特征的理解,该分析将鼓励与车辆制造商和自动驾驶汽车技术公司合作,进一步研究碰撞原因,以实现改进测试场景构建和优化自动驾驶汽车自动驾驶系统(ADS)的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验