CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN) UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, F-33600 Pessac, France.
CNRS, Institut de Biochimie et Genetique Cellulaires (IBGC) UMR 5095, University of Bordeaux, F-33077 Bordeaux, France.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2014085118.
Neurodegenerative disorders are frequently associated with β-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical β-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.
神经退行性疾病常与富含β-折叠的淀粉样沉积物有关。淀粉样形成蛋白可以在不同的结构构象下聚集,这些构象被称为菌株,它们可以表现出类似朊病毒的行为和独特的病理表型。目前尚不清楚定义菌株特异性和菌株间相互作用(交叉接种)的精确分子决定因素。真菌中的 HET-s 朊病毒蛋白代表了研究朊病毒淀粉样蛋白基本性质的模型系统。在这里,我们报告了 HET-s 模型蛋白的远距离同源物 HELLF 的淀粉样蛋白朊病毒结构。我们发现这两种淀粉样蛋白仅共享 17%的序列同一性,但在体内缺乏交叉接种能力,这表明在非常相似的淀粉样折叠中,朊病毒特异性可能不同。我们对 HELLF 序列进行了工程改造,以探索序列到折叠保守性的极限,并确定交叉接种和朊病毒特异性的决定因素。我们发现,即使与 HET-s 的同一性极低(5%),淀粉样折叠的保守性仍然存在。接下来,我们推导出一个基于 HELLF 的序列,称为 HEC,它能够在 HELLF 和 HET-s 之间体内突破交叉接种障碍,揭示控制在残基水平上交叉接种的决定因素。这些发现表明,几乎相同的淀粉样骨干结构可能不足以进行交叉接种,而关键的侧链位置可能决定淀粉样折叠的接种特异性。我们的工作重新定义了朊病毒菌株的概念边界,并阐明了与一类重要致病因子有关的关键分子特征。