Suppr超能文献

利用微阵列基因表达数据反向工程基因调控网络中自调控网络基序的识别

Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data.

作者信息

Khalid Mehrosh, Khan Sharifullah, Ahmad Jamil, Shaheryar Muhammad

机构信息

School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad, Pakistan.

Research Centre for Modelling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.

出版信息

IET Syst Biol. 2019 Apr;13(2):55-68. doi: 10.1049/iet-syb.2018.5001.

Abstract

Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self-regulatory interactions. The values of gene co-expressions could help in identifying co-regulations among them. The proposed approach aims at computing the differences in variances of co-expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co-variances using principal component analysis (PCA) to predict an asymmetric and non-diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time-series RTX therapy, Arabidopsis thaliana, DREAM-3, and DREAM-8 datasets, in comparison with existing state-of-the-art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self-regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions.

摘要

基因调控网络(GRNs)是通过多种计算方法从微阵列基因表达数据中重建的。这个过程会产生基因对的对称和对角相互作用,而这些相互作用无法被建模为直接激活、抑制和自我调节相互作用。基因共表达的值有助于识别它们之间的共同调控。所提出的方法旨在计算共表达基因方差的差异,而不是计算不同实验条件下平均表达值的差异。它采用主成分分析(PCA)的多元协方差来预测不对称和非对角基因相互作用矩阵,仅选择那些在基因调控表达中表现出最大方差的基因对相互作用。不对称基因调控相互作用有助于识别控制调控因子,从而通过最小化先前未连接的网络组件之间的连接来降低假阳性率。与现有最先进的方法相比,在包括时间序列RTX疗法、拟南芥、DREAM - 3和DREAM - 8数据集在内的真实和计算机模拟数据集上的实验结果证明了所提出方法在预测正反馈和负反馈环以及自我调节相互作用方面的性能提升。生成的基因调控网络在确定基因对调控相互作用的真实性质方面具有潜力。

相似文献

本文引用的文献

2
Modeling gene regulation from paired expression and chromatin accessibility data.基于表达和染色质可及性数据的基因调控建模。
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):E4914-E4923. doi: 10.1073/pnas.1704553114. Epub 2017 Jun 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验