文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在治疗室等中心进行电子FLASH 传输,以实现临床 LINAC 的高效可逆转换。

Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.

出版信息

Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):872-882. doi: 10.1016/j.ijrobp.2021.01.011. Epub 2021 Jan 11.


DOI:10.1016/j.ijrobp.2021.01.011
PMID:33444695
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10416223/
Abstract

PURPOSE: In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. METHODS AND MATERIALS: The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies. RESULTS: The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%. CONCLUSIONS: At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.

摘要

目的:在这项研究中,开发了一些程序,以实现对临床直线加速器(LINAC)的高效可逆转换,并将超高剂量率(UHDR)电子束或常规束输送到治疗室等中心,用于 FLASH 放射治疗。

方法与材料:通过将 X 射线靶从光束路径中缩回、将转筒定位在空端口上,并在治疗控制台中选择 10MV 光子束能量,将 LINAC 在 20 分钟内转换为可提供 UHDR 束。在不同的射野尺寸下,用水中模体中的 Gafchromic 胶片和光激励发光剂量计(OSLD)测量剂量率表面和深度剂量分布。脉冲控制器通过散射辐射信号计数脉冲,并为预设的脉冲计数对其进行传输。基于快速光电倍增管的切伦科夫探测器以 2ns 的采样率测量每个脉冲的束输出。转换回临床模式后,对所有临床批准的能量进行常规束输出、平坦度、对称性、射野尺寸和能量测量。

结果:在等中心处,1cm 直径和 1.5in 直径的圆形射野以及 jaws-wide-open 射野的表面平均剂量率分别为 238±5Gy/s、262±5Gy/s 和 290±5Gy/s。光束的径向对称性分别为 2.4%、0.5%和 0.2%。胶片和 OSLD 的同时照射剂量在 1%以内。光电倍增管显示,LINAC 在输出稳定之前,在前 4 到 6 个脉冲中需要上升时间,之后其稳定性在 3%以内。

结论:在治疗室等中心处,实现了 10 MeV UHDR 束。束输出具有可重复性,但需要进一步研究上升时间,相当于约 1Gy,需要进行剂量监测。UHDR 束可以照射大小不同的受试者,在最小化修改临床设置的情况下研究潜在的 FLASH 放射生物学效应,并且通过减小源皮距可以进一步提高剂量率。

相似文献

[1]
Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC.

Int J Radiat Oncol Biol Phys. 2021-7-1

[2]
Rapid Switching of a C-Series Linear Accelerator Between Conventional and Ultrahigh-Dose-Rate Research Mode With Beamline Modifications and Output Stabilization.

Int J Radiat Oncol Biol Phys. 2024-7-15

[3]
Spatial and temporal dosimetry of individual electron FLASH beam pulses using radioluminescence imaging.

Phys Med Biol. 2021-6-30

[4]
Development of a compact linear accelerator to generate ultrahigh dose rate high-energy X-rays for FLASH radiotherapy applications.

Med Phys. 2023-3

[5]
A simulation study of ionizing radiation acoustic imaging (iRAI) as a real-time dosimetric technique for ultra-high dose rate radiotherapy (UHDR-RT).

Med Phys. 2021-10

[6]
Technical note: A small animal irradiation platform for investigating the dependence of the FLASH effect on electron beam parameters.

Med Phys. 2024-2

[7]
Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons.

Med Phys. 2024-2

[8]
Enabling ultra-high dose rate electron beams at a clinical linear accelerator for isocentric treatments.

Radiother Oncol. 2023-10

[9]
Technical Note: Single-pulse beam characterization for FLASH-RT using optical imaging in a water tank.

Med Phys. 2021-5

[10]
Characterization of a commercial plastic scintillator for electron FLASH dosimetry.

J Appl Clin Med Phys. 2024-8

引用本文的文献

[1]
Beam intensity and stability control on a modified clinical linear accelerator for FLASH irradiation.

Phys Med Biol. 2025-8-14

[2]
A systematic review of electron FLASH dosimetry and beam control mechanisms utilized with modified non-clinical LINACs.

J Appl Clin Med Phys. 2025-4

[3]
A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons.

Med Phys. 2025-3

[4]
FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application.

Int J Mol Sci. 2024-11-21

[5]
Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy.

Med Phys. 2024-12

[6]
Commissioning an ultra-high-dose-rate electron linac with end-to-end tests.

Phys Med Biol. 2024-8-9

[7]
Electron beam response corrections for an ultra-high-dose-rate capable diode dosimeter.

Med Phys. 2024-8

[8]
Intracellular Oxygen Transient Quantification in Vivo During Ultra-High Dose Rate FLASH Radiation Therapy.

Int J Radiat Oncol Biol Phys. 2024-11-1

[9]
Rapid Switching of a C-Series Linear Accelerator Between Conventional and Ultrahigh-Dose-Rate Research Mode With Beamline Modifications and Output Stabilization.

Int J Radiat Oncol Biol Phys. 2024-7-15

[10]
Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom.

Int J Radiat Oncol Biol Phys. 2024-9-1

本文引用的文献

[1]
Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation.

J Appl Clin Med Phys. 2020-12

[2]
Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies.

Med Phys. 2020-9

[3]
Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?

Front Oncol. 2020-1-17

[4]
Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System.

Int J Radiat Oncol Biol Phys. 2020-2-1

[5]
On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates.

Med Phys. 2019-10-23

[6]
Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer.

Radiother Oncol. 2019-7-12

[7]
Treatment of a first patient with FLASH-radiotherapy.

Radiother Oncol. 2019-7-11

[8]
Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams.

Med Phys. 2019-8-1

[9]
Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation.

Radiother Oncol. 2019-6-25

[10]
Clinical translation of FLASH radiotherapy: Why and how?

Radiother Oncol. 2019-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索