用于FLASH放疗的改进型临床直线加速器的束流强度和稳定性控制
Beam intensity and stability control on a modified clinical linear accelerator for FLASH irradiation.
作者信息
Tan Yuewen, Deoli Naresh T, Harken Andrew D, Brenner David J, Garty Guy
机构信息
Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, United States of America.
Center for Radiological Research, Columbia University, New York, NY 10032, United States of America.
出版信息
Phys Med Biol. 2025 Aug 14;70(16):165020. doi: 10.1088/1361-6560/adf8ac.
The FLASH effect has gained significant attention in radiobiology and radiation oncology due to its potential to improve therapeutic outcomes by delivering ultra-high dose-rate (UHDR) irradiations. Understanding UHDR biological mechanisms can also contribute to the development of biodosimetry and radiological medical countermeasures. However, achieving stable and reproducible high-current UHDR electron beams has been reported to be challenging with modified clinical linear accelerator (Linac) systems, and has not been systematically studied.We investigated how key standing-wave linear accelerator parameters, including electron gun current, pulse-forming network voltage, and auto-frequency control, affect the stability of electron beam intensity on a modified Varian Clinac 2100 C. We also developed a parameter-tuning method to adjust beam intensity and improve beam stability.This approach enabled (1) fine-tuning of dose-per-pulse without modifying the physical setup and (2) reduction of beam fluctuations, particularly during cold starts. These improvements enhanced both pulse-by-pulse stability and trial-by-trial reproducibility. The resulting stability was validated through multiple biological experiments.This work offers practical guidance for improving UHDR beam stability and reproducibility, as well as enabling intensity tuning in modified clinical linear accelerators. It can support the development of more reliable preclinical FLASH irradiators, thereby contributing to the advancement of FLASH research.
由于超高速率(UHDR)辐照具有改善治疗效果的潜力,FLASH效应在放射生物学和放射肿瘤学领域受到了广泛关注。了解UHDR的生物学机制也有助于生物剂量测定和放射医学对策的发展。然而,据报道,使用改进的临床直线加速器(Linac)系统实现稳定且可重复的高电流UHDR电子束具有挑战性,且尚未进行系统研究。我们研究了包括电子枪电流、脉冲形成网络电压和自动频率控制在内的关键驻波线性加速器参数如何影响改进后的瓦里安Clinac 2100 C上电子束强度的稳定性。我们还开发了一种参数调整方法来调节束流强度并提高束流稳定性。这种方法能够(1)在不改变物理设置的情况下对每脉冲剂量进行微调,以及(2)减少束流波动,尤其是在冷启动期间。这些改进提高了逐脉冲稳定性和逐试验再现性。通过多次生物学实验验证了由此产生的稳定性。这项工作为提高UHDR束流稳定性和再现性以及在改进的临床直线加速器中实现强度调节提供了实用指导。它可以支持开发更可靠的临床前FLASH辐照器,从而推动FLASH研究的进展。