Suppr超能文献

利用多起点优化从单轴试验中确定组织材料参数。

Identifiability of tissue material parameters from uniaxial tests using multi-start optimization.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.

Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.

出版信息

Acta Biomater. 2021 Mar 15;123:197-207. doi: 10.1016/j.actbio.2021.01.006. Epub 2021 Jan 11.

Abstract

Determining tissue biomechanical material properties from mechanical test data is frequently required in a variety of applications. However, the validity of the resulting constitutive model parameters is the subject of debate in the field. Parameter optimization in tissue mechanics often comes down to the "identifiability" or "uniqueness" of constitutive model parameters; however, despite advances in formulating complex constitutive relations and many classic and creative curve-fitting approaches, there is currently no accessible framework to study the identifiability of tissue material parameters. Our objective was to assess the identifiability of material parameters for established constitutive models of fiber-reinforced soft tissues, biomaterials, and tissue-engineered constructs and establish a generalizable procedure for other applications. To do so, we generated synthetic experimental data by simulating uniaxial tension and compression tests, commonly used in biomechanics. We then fit this data using a multi-start optimization technique based on the nonlinear least-squares method with multiple initial parameter guesses. We considered tendon and sclera as example tissues, using constitutive models that describe these fiber-reinforced tissues. We demonstrated that not all the model parameters of these constitutive models were identifiable from uniaxial mechanical tests, despite achieving virtually identical fits to the stress-stretch response. We further show that when the lateral strain was considered as an additional fitting criterion, more parameters are identifiable, but some remain unidentified. This work provides a practical approach for addressing parameter identifiability in tissue mechanics.

摘要

从力学测试数据中确定组织生物力学材料特性在各种应用中经常需要。然而,所得本构模型参数的有效性是该领域争论的主题。组织力学中的参数优化通常归结为本构模型参数的“可识别性”或“唯一性”;然而,尽管在制定复杂本构关系和许多经典和创造性的曲线拟合方法方面取得了进展,但目前还没有一个可访问的框架来研究组织材料参数的可识别性。我们的目标是评估纤维增强软组织、生物材料和组织工程构建物的既定本构模型的材料参数的可识别性,并为其他应用建立一个可推广的程序。为此,我们通过模拟生物力学中常用的单轴拉伸和压缩试验来生成合成实验数据。然后,我们使用基于非线性最小二乘方法的多起始优化技术来拟合这些数据,该方法使用多个初始参数猜测。我们考虑了肌腱和巩膜作为示例组织,使用描述这些纤维增强组织的本构模型。我们证明,尽管这些本构模型的几乎所有模型参数都能与应力-应变响应拟合得非常好,但并非所有参数都能从单轴力学测试中识别出来。我们进一步表明,当将横向应变视为附加拟合标准时,可以识别更多的参数,但仍有一些参数无法识别。这项工作为解决组织力学中的参数可识别性提供了一种实用方法。

相似文献

2
Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.基于体内宏观压痕的软组织本构参数可识别性
J Mech Behav Biomed Mater. 2023 Apr;140:105708. doi: 10.1016/j.jmbbm.2023.105708. Epub 2023 Feb 3.
8
Structural and material properties of human foot tendons.人类足部肌腱的结构与材料特性
Clin Biomech (Bristol). 2016 Aug;37:1-6. doi: 10.1016/j.clinbiomech.2016.05.014. Epub 2016 May 27.

本文引用的文献

7
Viscoelastic hydrogels for 3D cell culture.用于三维细胞培养的黏弹性水凝胶。
Biomater Sci. 2017 Jul 25;5(8):1480-1490. doi: 10.1039/c7bm00261k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验