Department of Biomedical Engineering, University of Delaware, Newark, Delaware, US.
J R Soc Interface. 2024 Nov;21(220):20240415. doi: 10.1098/rsif.2024.0415. Epub 2024 Nov 13.
Application of biomechanical models relies on model parameters estimated from experimental data. Parameter non-identifiability, when the same model output can be produced by many sets of parameter values, introduces severe errors yet has received relatively little attention in biomechanics and is subtle enough to remain unnoticed in the absence of deliberate verification. The present work develops a global identifiability analysis method in which cluster analysis and singular value decomposition are applied to vectors of parameter-output variable correlation coefficients. This method provides a visual representation of which specific experimental design elements are beneficial or harmful in terms of parameter identifiability, supporting the correction of deficiencies in the test protocol prior to testing physical specimens. The method was applied to a representative nonlinear biphasic model for cartilaginous tissue, demonstrating that confined compression data does not provide identifiability for the biphasic model parameters. This result was confirmed by two independent analyses: local analysis of the Hessian of a sum-of-squares error cost function and observation of the behaviour of two optimization algorithms. Therefore, confined compression data are insufficient for the calibration of general-purpose biphasic models. Identifiability analysis by these or other methods is strongly recommended when planning future experiments.
生物力学模型的应用依赖于从实验数据中估计的模型参数。当同一模型输出可以由多组参数值产生时,就会出现参数不可识别性,然而这在生物力学中并没有受到太多关注,而且由于其微妙性,在没有故意验证的情况下很容易被忽视。本工作开发了一种全局可识别性分析方法,该方法将聚类分析和奇异值分解应用于参数-输出变量相关系数的向量。该方法提供了一种直观的表示,即哪些特定的实验设计元素对参数可识别性有利或不利,支持在测试物理标本之前纠正测试协议中的缺陷。该方法应用于软骨组织的代表性非线性双相模型,结果表明,压缩数据并不能提供双相模型参数的可识别性。这一结果通过两种独立的分析得到了证实:对平方和误差代价函数的 Hessian 的局部分析和对两种优化算法行为的观察。因此,压缩数据不足以校准通用的双相模型。在规划未来的实验时,强烈建议使用这些或其他方法进行可识别性分析。