Centro de Investigación y de Estudios Avanzados del IPN, Unidad Tamaulipas, Parque TECNOTAM, ZIP 87130, Ciudad Victoria, Tamaulipas, Mexico.
Instituto Politécnico Nacional, CIC, Av. Juan de Dios Bátiz S/N, Col. Nueva Industrial Vallejo, Gustavo A. Madero, ZIP 07738, Mexico City, Mexico; Tecnológico de Monterrey, Campus Guadalajara, Av. Gral. Ramón Corona 2514, ZIP 445138, Zapopan, Jalisco, Mexico.
Neural Netw. 2021 Apr;136:40-53. doi: 10.1016/j.neunet.2020.12.021. Epub 2020 Dec 29.
A typical feature of hyperbox-based dendrite morphological neurons (DMN) is the generation of sharp and rough decision boundaries that inaccurately track the distribution shape of classes of patterns. This feature is because the minimum and maximum activation functions force the decision boundaries to match the faces of the hyperboxes. To improve the DMN response, we introduce a dendritic model that uses smooth maximum and minimum functions to soften the decision boundaries. The classification performance assessment is conducted on nine synthetic and 28 real-world datasets. Based on the experimental results, we demonstrate that the smooth activation functions improve the generalization capacity of DMN. The proposed approach is competitive with four machine learning techniques, namely, Multilayer Perceptron, Radial Basis Function Network, Support Vector Machine, and Nearest Neighbor algorithm. Besides, the computational complexity of DMN training is lower than MLP and SVM classifiers.
基于超盒的树突形态神经元 (DMN) 的一个典型特征是生成尖锐和粗糙的决策边界,这些边界不准确地跟踪模式类别的分布形状。这个特征是因为最小和最大激活函数迫使决策边界与超盒的面匹配。为了提高 DMN 的响应,我们引入了一种树突模型,该模型使用平滑的最大和最小函数来软化决策边界。在九个合成数据集和二十八个真实数据集上进行了分类性能评估。根据实验结果,我们证明了平滑激活函数可以提高 DMN 的泛化能力。该方法与四种机器学习技术(多层感知机、径向基函数网络、支持向量机和最近邻算法)具有竞争力。此外,DMN 训练的计算复杂度低于 MLP 和 SVM 分类器。