Suppr超能文献

对微生物组进行功能性下呼吸道基因组分析以捕获活跃的微生物代谢。

Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism.

机构信息

Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA.

Dept of Pathology, New York University School of Medicine, New York, NY, USA.

出版信息

Eur Respir J. 2021 Jul 29;58(1). doi: 10.1183/13993003.03434-2020. Print 2021 Jul.

Abstract

BACKGROUND

Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary.

METHODS

Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed.

RESULTS

Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing.

CONCLUSIONS

Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.

摘要

背景

基于细菌 16S rRNA 基因测序的下呼吸道微生物组研究评估了微生物群落结构,但只能推断功能特征。下呼吸道中的微生物产物,如短链脂肪酸 (SCFA),对宿主的免疫状态有显著影响。因此,有必要对微生物组进行功能分析。

方法

本研究使用了研究性支气管镜吸烟者队列的上、下呼吸道样本。此外,我们还在实验性小鼠模型中验证了我们的结果。我们使用全基因组鸟枪法 (WGS) 和 RNA 宏转录组测序对 16S rRNA 基因测序进行了扩展,以对微生物组进行特征描述。还在下呼吸道样本中测量了 SCFA,并将其与每个测序数据集进行了相关性分析。在小鼠模型中,进行了 16S rRNA 基因和 RNA 宏转录组测序。

结果

使用推断的宏基因组、WGS 和宏转录组数据对下呼吸道微生物组进行功能评估的结果存在差异。将推断的宏基因组与 SCFA 水平进行比较表明,16S rRNA 基因测序数据的推断宏基因组相关性较差,而将 SCFA 水平与 WGS 和宏转录组数据进行比较时,相关性较好。在小鼠模型中用口腔共生菌模拟下呼吸道吸入,结果表明宏转录组最有效地捕获了短暂的活跃微生物代谢,而 16S rRNA 基因测序则高估了这一过程。

结论

通过宏转录组数据对下呼吸道微生物组进行功能特征描述,确定了能够产生具有免疫调节能力的代谢物(如 SCFA)的代谢活跃的微生物。

相似文献

引用本文的文献

4
The Respiratory Tract Microbiome and Human Health.呼吸道微生物群与人类健康
Microb Biotechnol. 2025 May;18(5):e70147. doi: 10.1111/1751-7915.70147.
5
The lung microbiome in interstitial lung disease.间质性肺疾病中的肺部微生物群。
Breathe (Sheff). 2025 Apr 17;21(2):240167. doi: 10.1183/20734735.0167-2024. eCollection 2025 Apr.
10
Lung microbiota: implications and interactions in chronic pulmonary diseases.肺部微生物组:慢性肺部疾病的影响和相互作用。
Front Cell Infect Microbiol. 2024 Aug 19;14:1401448. doi: 10.3389/fcimb.2024.1401448. eCollection 2024.

本文引用的文献

2
Methods in Lung Microbiome Research.肺微生物组研究方法。
Am J Respir Cell Mol Biol. 2020 Mar;62(3):283-299. doi: 10.1165/rcmb.2019-0273TR.
10
Protective Mechanisms of Butyrate on Inflammatory Bowel Disease.丁酸盐对炎症性肠病的保护机制。
Curr Pharm Des. 2018;24(35):4154-4166. doi: 10.2174/1381612824666181001153605.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验