Suppr超能文献

基于改进的 YOLOv3 框架的番茄检测。

Tomato detection based on modified YOLOv3 framework.

机构信息

Institute of Agricultural Engineering, Shanxi Agricultural University, Jinzhong City, 030801, Shanxi, China.

出版信息

Sci Rep. 2021 Jan 14;11(1):1447. doi: 10.1038/s41598-021-81216-5.

Abstract

Fruit detection forms a vital part of the robotic harvesting platform. However, uneven environment conditions, such as branch and leaf occlusion, illumination variation, clusters of tomatoes, shading, and so on, have made fruit detection very challenging. In order to solve these problems, a modified YOLOv3 model called YOLO-Tomato models were adopted to detect tomatoes in complex environmental conditions. With the application of label what you see approach, densely architecture incorporation, spatial pyramid pooling and Mish function activation to the modified YOLOv3 model, the YOLO-Tomato models: YOLO-Tomato-A at AP 98.3% with detection time 48 ms, YOLO-Tomato-B at AP 99.3% with detection time 44 ms, and YOLO-Tomato-C at AP 99.5% with detection time 52 ms, performed better than other state-of-the-art methods.

摘要

果实检测是机器人采摘平台的重要组成部分。然而,不均匀的环境条件,如树枝和树叶遮挡、光照变化、番茄簇、阴影等,使得果实检测极具挑战性。为了解决这些问题,采用了一种名为 YOLO-Tomato 的改进 YOLOv3 模型来检测复杂环境条件下的番茄。通过在改进的 YOLOv3 模型中应用“所见即所得”标签方法、密集架构合并、空间金字塔池化和 Mish 函数激活,YOLO-Tomato 模型:AP 为 98.3%、检测时间为 48ms 的 YOLO-Tomato-A,AP 为 99.3%、检测时间为 44ms 的 YOLO-Tomato-B,以及 AP 为 99.5%、检测时间为 52ms 的 YOLO-Tomato-C,表现优于其他最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/ed3e14678277/41598_2021_81216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验