文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进的 YOLOv3 框架的番茄检测。

Tomato detection based on modified YOLOv3 framework.

机构信息

Institute of Agricultural Engineering, Shanxi Agricultural University, Jinzhong City, 030801, Shanxi, China.

出版信息

Sci Rep. 2021 Jan 14;11(1):1447. doi: 10.1038/s41598-021-81216-5.


DOI:10.1038/s41598-021-81216-5
PMID:33446897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7809275/
Abstract

Fruit detection forms a vital part of the robotic harvesting platform. However, uneven environment conditions, such as branch and leaf occlusion, illumination variation, clusters of tomatoes, shading, and so on, have made fruit detection very challenging. In order to solve these problems, a modified YOLOv3 model called YOLO-Tomato models were adopted to detect tomatoes in complex environmental conditions. With the application of label what you see approach, densely architecture incorporation, spatial pyramid pooling and Mish function activation to the modified YOLOv3 model, the YOLO-Tomato models: YOLO-Tomato-A at AP 98.3% with detection time 48 ms, YOLO-Tomato-B at AP 99.3% with detection time 44 ms, and YOLO-Tomato-C at AP 99.5% with detection time 52 ms, performed better than other state-of-the-art methods.

摘要

果实检测是机器人采摘平台的重要组成部分。然而,不均匀的环境条件,如树枝和树叶遮挡、光照变化、番茄簇、阴影等,使得果实检测极具挑战性。为了解决这些问题,采用了一种名为 YOLO-Tomato 的改进 YOLOv3 模型来检测复杂环境条件下的番茄。通过在改进的 YOLOv3 模型中应用“所见即所得”标签方法、密集架构合并、空间金字塔池化和 Mish 函数激活,YOLO-Tomato 模型:AP 为 98.3%、检测时间为 48ms 的 YOLO-Tomato-A,AP 为 99.3%、检测时间为 44ms 的 YOLO-Tomato-B,以及 AP 为 99.5%、检测时间为 52ms 的 YOLO-Tomato-C,表现优于其他最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/3f563f7cbbda/41598_2021_81216_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/ed3e14678277/41598_2021_81216_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/ddc3fcd6709d/41598_2021_81216_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/cdeda01460bf/41598_2021_81216_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/6b7f5c8470d1/41598_2021_81216_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/e245d179ceb2/41598_2021_81216_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/82f62b6b761d/41598_2021_81216_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/a795b8e754f0/41598_2021_81216_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/9ecdef9a6afd/41598_2021_81216_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/3f563f7cbbda/41598_2021_81216_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/ed3e14678277/41598_2021_81216_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/ddc3fcd6709d/41598_2021_81216_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/cdeda01460bf/41598_2021_81216_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/6b7f5c8470d1/41598_2021_81216_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/e245d179ceb2/41598_2021_81216_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/82f62b6b761d/41598_2021_81216_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/a795b8e754f0/41598_2021_81216_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/9ecdef9a6afd/41598_2021_81216_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf9/7809275/3f563f7cbbda/41598_2021_81216_Fig9_HTML.jpg

相似文献

[1]
Tomato detection based on modified YOLOv3 framework.

Sci Rep. 2021-1-14

[2]
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3.

Sensors (Basel). 2020-4-10

[3]
Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense.

Front Plant Sci. 2021-4-9

[4]
Enhanced tomato detection in greenhouse environments: a lightweight model based on S-YOLO with high accuracy.

Front Plant Sci. 2024-8-22

[5]
JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection.

Comput Intell Neurosci. 2021-4-1

[6]
Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse.

Sensors (Basel). 2021-5-20

[7]
Detection of Specific Building in Remote Sensing Images Using a Novel YOLO-S-CIOU Model. Case: Gas Station Identification.

Sensors (Basel). 2021-2-16

[8]
CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism.

PeerJ Comput Sci. 2023-7-20

[9]
Online recognition and yield estimation of tomato in plant factory based on YOLOv3.

Sci Rep. 2022-5-23

[10]
Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model.

Plant Methods. 2020-6-8

引用本文的文献

[1]
A review of visual perception technology for intelligent fruit harvesting robots.

Front Plant Sci. 2025-8-19

[2]
Deep Learning and Particle Swarm Optimisation-Based Techniques for Visually Impaired Humans' Text Recognition and Identification.

Augment Hum Res. 2021

[3]
CTDA: an accurate and efficient cherry tomato detection algorithm in complex environments.

Front Plant Sci. 2025-3-13

[4]
Tomato ripeness and stem recognition based on improved YOLOX.

Sci Rep. 2025-1-14

[5]
A Lightweight and High-Precision Passion Fruit YOLO Detection Model for Deployment in Embedded Devices.

Sensors (Basel). 2024-7-30

[6]
Lightweight tomato ripeness detection algorithm based on the improved RT-DETR.

Front Plant Sci. 2024-7-5

[7]
Classification of peanut pod rot based on improved YOLOv5s.

Front Plant Sci. 2024-4-15

[8]
A simplified network topology for fruit detection, counting and mobile-phone deployment.

PLoS One. 2023

[9]
Tea-YOLOv8s: A Tea Bud Detection Model Based on Deep Learning and Computer Vision.

Sensors (Basel). 2023-7-21

[10]
An improved YOLOv5s model using feature concatenation with attention mechanism for real-time fruit detection and counting.

Front Plant Sci. 2023-6-26

本文引用的文献

[1]
Goosegrass Detection in Strawberry and Tomato Using a Convolutional Neural Network.

Sci Rep. 2020-6-12

[2]
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3.

Sensors (Basel). 2020-4-10

[3]
A Mature-Tomato Detection Algorithm Using Machine Learning and Color Analysis.

Sensors (Basel). 2019-4-30

[4]
Deep Count: Fruit Counting Based on Deep Simulated Learning.

Sensors (Basel). 2017-4-20

[5]
DeepFruits: A Fruit Detection System Using Deep Neural Networks.

Sensors (Basel). 2016-8-3

[6]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[7]
Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion.

Sensors (Basel). 2016-1-29

[8]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索