Suppr超能文献

一种改进的YOLOv5s模型,使用带有注意力机制的特征拼接进行实时水果检测与计数。

An improved YOLOv5s model using feature concatenation with attention mechanism for real-time fruit detection and counting.

作者信息

Lawal Olarewaju Mubashiru, Zhu Shengyan, Cheng Kui

机构信息

Sanjiang Institute of Artificial Intelligence and Robotics, Yibin University, Sichuan, China.

出版信息

Front Plant Sci. 2023 Jun 26;14:1153505. doi: 10.3389/fpls.2023.1153505. eCollection 2023.

Abstract

An improved YOLOv5s model was proposed and validated on a new fruit dataset to solve the real-time detection task in a complex environment. With the incorporation of feature concatenation and an attention mechanism into the original YOLOv5s network, the improved YOLOv5s recorded 122 layers, 4.4 × 10 params, 12.8 GFLOPs, and 8.8 MB weight size, which are 45.5%, 30.2%, 14.1%, and 31.3% smaller than the original YOLOv5s, respectively. Meanwhile, the obtained 93.4% of mAP tested on the valid set, 96.0% of mAP tested on the test set, and 74 fps of speed tested on videos using improved YOLOv5s is 0.6%, 0.5%, and 10.4% higher than the original YOLOv5s model, respectively. Using videos, the fruit tracking and counting tested on the improved YOLOv5s observed less missed and incorrect detections compared to the original YOLOv5s. Furthermore, the aggregated detection performance of improved YOLOv5s outperformed the network of GhostYOLOv5s, YOLOv4-tiny, and YOLOv7-tiny, including other mainstream YOLO variants. Therefore, the improved YOLOv5s is lightweight with reduced computation costs, can better generalize against complex conditions, and is applicable for real-time detection in fruit picking robots and low-power devices.

摘要

提出了一种改进的YOLOv5s模型,并在一个新的水果数据集上进行了验证,以解决复杂环境下的实时检测任务。通过将特征拼接和注意力机制融入原始的YOLOv5s网络,改进后的YOLOv5s有122层、4.4×10个参数、12.8 GFLOPs以及8.8 MB的权重大小,分别比原始的YOLOv5s小45.5%、30.2%、14.1%和31.3%。同时,在验证集上测试得到的93.4%的平均精度均值(mAP)、在测试集上测试得到的96.0%的mAP以及使用改进后的YOLOv5s在视频上测试得到的74帧每秒的速度,分别比原始的YOLOv5s模型高0.6%、0.5%和10.4%。使用视频时,与原始的YOLOv5s相比,在改进后的YOLOv5s上进行的水果跟踪和计数观察到更少的漏检和误检。此外,改进后的YOLOv5s的综合检测性能优于GhostYOLOv5s、YOLOv4-tiny和YOLOv7-tiny网络,以及其他主流的YOLO变体。因此,改进后的YOLOv5s轻量级且计算成本降低,能够更好地应对复杂条件,适用于水果采摘机器人和低功耗设备中的实时检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cdd/10332635/1dd122fd4e27/fpls-14-1153505-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验