Suppr超能文献

Microvascular exchange and interstitial volume regulation in the rat: model validation.

作者信息

Bert J L, Bowen B D, Reed R K

机构信息

Department of Chemical Engineering, University of British Columbia, Vancouver, Canada.

出版信息

Am J Physiol. 1988 Feb;254(2 Pt 2):H384-99. doi: 10.1152/ajpheart.1988.254.2.H384.

Abstract

A dynamic mathematical model is formulated and used to describe the distribution and transport of fluid and plasma proteins between the circulation, interstitial space of skin and muscle, and the lymphatics in the rat. Two descriptions of transcapillary exchange are investigated: a homoporous "Starling model" and a heteroporous "plasma leak model." Parameters used in the two hypothetical transport mechanisms are determined based on statistical fitting procedures between simulation predictions and selected experimental data. These data consist of interstitial fluid volume and colloid osmotic pressure measurements as a function of venous pressure for muscle and interstitial colloid osmotic pressure vs. venous pressure for skin. The values determined for the transport parameters compare well with data in the literature. The fully determined model is used to simulate steady-state conditions of hypoproteinemia, overhydration, and dehydration, as well as the dynamic response to changes in venous pressure and intravascularly administered protein tracers. Comparisons between the simulation predictions and experimental data for these various perturbations are made. The plasma leak model appears to provide a better description of microvascular exchange.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验