Suppr超能文献

用于环境应用的功能性微藻丝结构的3D打印

3D Printing of Functional Microalgal Silk Structures for Environmental Applications.

作者信息

Zhao Siwei, Guo Chengchen, Kumarasena Allison, Omenetto Fiorenzo G, Kaplan David L

机构信息

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.

Silklab, Department of Biomedical Engineering, Tufts University, 200 Boston Avenue, Suite 4875, Medford, Massachusetts 02155, United States.

出版信息

ACS Biomater Sci Eng. 2019 Sep 9;5(9):4808-4816. doi: 10.1021/acsbiomaterials.9b00554. Epub 2019 Aug 6.

Abstract

Silk protein-based hydrogel materials suitable for hosting living microalgae due to the biocompatibility and ambient conditions gelation were developed. The silk was selected due to its robust mechanical properties, safe and compatible utility, green sourcing, and versatile materials formation. Through a series of assessments the mechanics and gelation kinetics of the hydrogel materials were optimized for three-dimensional (3D) printing. Silk hydrogel structures containing a marine microalgal strain, sp. were printed and these structures supported cell proliferation for at least 4 weeks and consistent photosynthetic activity for more than 90 days, the limits of the study time frame. This long-term cell viability and function suggest that these systems may be suitable for a broad range of applications, such as oxygen replenishment and carbon dioxide reduction toward a green, healthier indoor environment.

摘要

开发了基于丝蛋白的水凝胶材料,由于其生物相容性和在环境条件下的凝胶化特性,适合承载活微藻。选择丝是因为其具有强大的机械性能、安全且兼容的用途、绿色来源以及多样的材料形成方式。通过一系列评估,对水凝胶材料的力学性能和凝胶化动力学进行了优化,以用于三维(3D)打印。打印了含有海洋微藻菌株的丝水凝胶结构,这些结构支持细胞增殖至少4周,并在超过90天(即研究时间框架的限制)内保持一致的光合活性。这种长期的细胞活力和功能表明,这些系统可能适用于广泛的应用,例如为绿色、更健康的室内环境补充氧气和减少二氧化碳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验