Suppr超能文献

使用深度学习对肺癌进行分类。

Classification of malignant lung cancer using deep learning.

机构信息

Computer Science & Engineering Department, IK Gujral Punjab Technical University, Kapurthala, Punjab, India.

出版信息

J Med Eng Technol. 2021 Feb;45(2):85-93. doi: 10.1080/03091902.2020.1853837. Epub 2021 Jan 15.

Abstract

In the automatic detection of suspicious shaded regions on CT images derived from the LIDC-IDRI dataset, the diagnostic system plays a significant role. This paper introduces an automatic recognition method for lung nodules of the regions of concern (ROI). The lung regions are segmented from DICOM image size 512 × 512 by adding a median filter, Gaussian filter, Gabor filter and watershed algorithm. AlexNet uses 227 × 227 × 3 with "fc7" (fully connected) layers and GoogLeNet uses 224 × 224 × 3 with "pool5-drop 7 × 7 s1" layers. Here, the authors explain what is better about AlexNet and GoogLeNet through its performance analysis, feature extraction, classification, sensitivity, specificity, detection and false alarm rate with time complexity. A multi-class SVM classifier with 100% precision and specificity provided the best performance in deep learning neural networks.

摘要

在从 LIDC-IDRI 数据集得出的 CT 图像中自动检测可疑阴影区域方面,诊断系统起着重要作用。本文介绍了一种用于关注区域(ROI)的肺结节的自动识别方法。通过添加中值滤波器、高斯滤波器、Gabor 滤波器和分水岭算法,从 DICOM 图像大小 512×512 中分割出肺区。AlexNet 使用 227×227×3 与“fc7”(全连接)层,而 GoogLeNet 使用 224×224×3 与“pool5-drop 7×7 s1”层。在这里,作者通过性能分析、特征提取、分类、灵敏度、特异性、检测和误报率以及时间复杂度来解释 AlexNet 和 GoogLeNet 的优势。具有 100%精度和特异性的多类 SVM 分类器在深度学习神经网络中提供了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验