Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States.
Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran.
J Chem Theory Comput. 2021 Feb 9;17(2):678-693. doi: 10.1021/acs.jctc.0c01009. Epub 2021 Jan 15.
In this work, we report a new nonadiabatic molecular dynamics methodology that incorporates many-body (MB) effects in the treatment of electronic excited states in extended atomistic systems via linear-response time-dependent density functional theory (TD-DFT). The nonradiative dynamics of excited states in SiH and CdSe nanocrystals is studied at the MB (TD-DFT) and single-particle (SP) levels to reveal the role of MB effects. We find that a MB description of the excited states qualitatively changes the structure of coupling between the excited states, leading to larger nonadiabatic couplings and accelerating the dynamics by a factor of 2-4. The dependence of excited state dynamics in these systems on the surface hopping/decoherence methodology and the choice of the dynamical basis is investigated and analyzed. We demonstrated that the use of special "electron-only" or "hole-only" excitation bases may be advantageous over using the full "electron-hole" basis of SP states, making the computed dynamics more consistent with the one obtained at the MB level.
在这项工作中,我们报告了一种新的非绝热分子动力学方法,该方法通过线性响应含时密度泛函理论(TD-DFT)将多体(MB)效应纳入到处理扩展原子体系中电子激发态的方法中。在 MB(TD-DFT)和单粒子(SP)水平上研究了 SiH 和 CdSe 纳米晶体中激发态的非辐射动力学,以揭示 MB 效应的作用。我们发现,对激发态的 MB 描述从定性上改变了激发态之间的耦合结构,导致更大的非绝热耦合,并将动力学加速了 2-4 倍。研究并分析了这些体系中激发态动力学对表面跳跃/退相干方法和动力学基的选择的依赖性。我们证明,使用特殊的“仅电子”或“仅空穴”激发基可能比使用 SP 态的完整“电子-空穴”基更有利,从而使计算出的动力学与在 MB 水平上获得的动力学更一致。