Zurel Michael, Okay Cihan, Raussendorf Robert
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Phys Rev Lett. 2020 Dec 31;125(26):260404. doi: 10.1103/PhysRevLett.125.260404.
We show that every quantum computation can be described by a probabilistic update of a probability distribution on a finite phase space. Negativity in a quasiprobability function is not required in states or operations. Our result is consistent with Gleason's theorem and the Pusey-Barrett-Rudolph theorem.
我们证明,每一个量子计算都可以由有限相空间上概率分布的概率更新来描述。在态或运算中并不需要准概率函数中的负性。我们的结果与格莱森定理和普西-巴雷特-鲁道夫定理相一致。