Kuang Zeyu, Miller Owen D
Department of Applied Physics and Energy Sciences Institute, Yale University, New Haven, Connecticut 06511, USA.
Phys Rev Lett. 2020 Dec 31;125(26):263607. doi: 10.1103/PhysRevLett.125.263607.
We develop a computational framework for identifying bounds to light-matter interactions, originating from polarization-current-based formulations of local conservation laws embedded in Maxwell's equations. We propose an iterative method for imposing only the maximally violated constraints, enabling rapid convergence to global bounds. Our framework can identify bounds to the minimum size of any scatterer that encodes a specific linear operator, given only its material properties, as we demonstrate for the optical computation of a discrete Fourier transform. It further resolves bounds on far-field scattering properties over any arbitrary bandwidth, where previous bounds diverge.
我们开发了一个计算框架,用于确定光与物质相互作用的边界,该框架源自麦克斯韦方程组中基于极化电流的局部守恒定律公式。我们提出了一种迭代方法,仅施加最大违反的约束,从而能够快速收敛到全局边界。我们的框架可以确定任何编码特定线性算子的散射体的最小尺寸边界,仅给定其材料属性即可,正如我们在离散傅里叶变换的光学计算中所展示的那样。它还解决了任意带宽上远场散射特性的边界问题,而以前的边界在此处会发散。